Understanding Polymers Through Transfer Learning and Explainable AI

被引:1
作者
Miccio, Luis A. [1 ,2 ,3 ]
机构
[1] Donostia Int Phys Ctr, PM de Lardizabal 4, San Sebastian 20018, Spain
[2] Consejo Nacl Invest Cient & Tecn, Inst Mat Sci & Technol INTEMA, Natl Res Council, Colon 10850, RA-7600 Mar Del Plata, Argentina
[3] Univ Basque Country, Dept Polimeros & Mat Avanzados Fis Quim & Tecnol, UPV EHU, P Manuel Lardizabal 3, San Sebastian 20018, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 22期
关键词
AI; white boxing; transfer learning; polymer glass transition; GLASS-TRANSITION TEMPERATURES; PREDICTION; MONOMER;
D O I
10.3390/app142210413
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates' glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.
引用
收藏
页数:16
相关论文
共 44 条
  • [1] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    [J]. IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [2] New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete
    Anjum, Madiha
    Khan, Kaffayatullah
    Ahmad, Waqas
    Ahmad, Ayaz
    Amin, Muhammad Nasir
    Nafees, Afnan
    [J]. MATERIALS, 2022, 15 (18)
  • [3] Polymer Informatics: Opportunities and Challenges
    Audus, Debra J.
    de Pablo, Juan J.
    [J]. ACS MACRO LETTERS, 2017, 6 (10) : 1078 - 1082
  • [4] Importance of Structural Features and the Influence of Individual Structures of Graphene Oxide Using Shapley Value Analysis
    Barnard, Amanda S.
    Fox, Bronwyn L.
    [J]. CHEMISTRY OF MATERIALS, 2023, 35 (21) : 8840 - 8856
  • [5] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [6] Transfer learning-driven artificial intelligence model for glass transition temperature estimation of molecular glass formers mixtures
    Borredon, Claudia
    Miccio, Luis A.
    Schwartz, Gustavo A.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 238
  • [7] Characterising the glass transition temperature-structure relationship through a recurrent neural network
    Borredon, Claudia
    Miccio, Luis A.
    Cerveny, Silvina
    Schwartz, Gustavo A.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS-X, 2023, 18
  • [8] Predicting glass transition temperatures using neural networks
    Cassar, Daniel R.
    de Carvalho, Andre C. P. L. F.
    Zanotto, Edgar D.
    [J]. ACTA MATERIALIA, 2018, 159 : 249 - 256
  • [9] Predicting Polymers' Glass Transition Temperature by a Chemical Language Processing Model
    Chen, Guang
    Tao, Lei
    Li, Ying
    [J]. POLYMERS, 2021, 13 (11)
  • [10] Polymer reaction engineering meets explainable machine learning
    Fiosina, Jelena
    Sievers, Philipp
    Drache, Marco
    Beuermann, Sabine
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2023, 177