A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning

被引:1
|
作者
Li, Yang [1 ]
Gu, Xiaojiao [1 ]
Wei, Yonghe [1 ]
机构
[1] Shenyang Ligong Univ, Coll Mech Engn, Nanping Middle Rd 6, Shenyang 110159, Peoples R China
关键词
KANs; CNN; small sample; fault diagnosis; diffusion network; bearing; tool; DATA-DRIVEN;
D O I
10.3390/s24237516
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To tackle the issue of limited sample data in small sample fault diagnosis for rolling bearings using deep learning, we propose a fault diagnosis method that integrates a KANs-CNN network. Initially, the raw vibration signals are converted into two-dimensional time-frequency images via a continuous wavelet transform. Next, Using CNN combined with KANs for feature extraction, the nonlinear activation of KANs helps extract deep and complex features from the data. After the output of CNN-KANs, an FAN network module is added. The FAN module can employ various feature aggregation strategies, such as weighted averaging, max pooling, addition aggregation, etc., to combine information from multiple feature levels. To further tackle the small sample issue, data generation is performed on the original data through diffusion networks under conditions of fewer samples for bearings and tools, thereby increasing the sample size of the dataset and enhancing fault diagnosis accuracy. Experimental results demonstrate that, under small sample conditions, this method achieves higher accuracy compared to other approaches.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Learn to Supervise: Deep Reinforcement Learning-Based Prototype Refinement for Few-Shot Motor Fault Diagnosis
    Xia, Pengcheng
    Huang, Yixiang
    Liu, Chengliang
    Liu, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [2] A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets
    Zhang, Yizong
    Li, Shaobo
    Zhang, Ansi
    Li, Chuanjiang
    Qiu, Ling
    ENTROPY, 2022, 24 (09)
  • [3] A Survey of Few-shot Learning-based Compound Fault Diagnosis Methods for Industrial Processes
    Ma, Liang
    Shi, Fuzhong
    Wu, Zijing
    Peng, Kaixiang
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [4] Federated Few-Shot Learning-Based Machinery Fault Diagnosis in the Industrial Internet of Things
    Liang, Yingying
    Zhao, Peng
    Wang, Yimeng
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [5] Cross-Category Mechanical Fault Diagnosis Based on Deep Few-Shot Learning
    Xu, Juan
    Shi, Yongfang
    Yuan, Xiaohui
    Lu, Siliang
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27698 - 27709
  • [6] Few-shot bearing fault diagnosis based on meta-learning with discriminant space optimization
    Zhang, Dengming
    Zheng, Kai
    Bai, Yin
    Yao, Dengke
    Yang, Dewei
    Wang, Shaowang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [7] Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning
    Zhang, Shen
    Ye, Fei
    Wang, Bingnan
    Habetler, Thomas G.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (05) : 4754 - 4764
  • [8] A new meta-transfer learning method with freezing operation for few-shot bearing fault diagnosis
    Wang, Peiqi
    Li, Jingde
    Wang, Shubei
    Zhang, Fusheng
    Shi, Juanjuan
    Shen, Changqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (07)
  • [9] A meta-learning method for few-shot bearing fault diagnosis under variable working conditions
    Zeng, Liang
    Jian, Junjie
    Chang, Xinyu
    Wang, Shanshan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [10] Brain-Inspired Meta-Learning for Few-Shot Bearing Fault Diagnosis
    Wang, Jun
    Sun, Chuang
    Nandi, Asoke K.
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,