MULTIPLE RELAXATION EXPONENTIAL RUNGE--KUTTA METHODS FOR THE NONLINEAR SCHRODINGER EQUATION

被引:2
作者
Li, Dongfang [1 ,2 ]
Li, Xiaoxi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
relaxation technique; exponential Runge Kutta methods; structure-preserving methods; high-order accuracy; nonlinear Schrodinger equation; STABLE SCHEMES; ENERGY; TIME; INTEGRATORS; MASS; INVARIANTS; STABILITY; EFFICIENT; SOLITONS; SYSTEMS;
D O I
10.1137/23M1606034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel family of high-order structure-preserving methods is proposed for the nonlinear Schro"\dinger equation. The methods are developed by applying the multiple relaxation idea to the exponential Runge-Kutta methods. It is shown that the multiple relaxation exponential RungeKutta methods can achieve high-order accuracy in time and preserve multiple original invariants at the discrete level. They are the first exponential-type methods that preserve multiple invariants. The number of invariants the methods preserve depends only on that of the relaxation parameters. Several numerical experiments are carried out to support the theoretical results and illustrate the effectiveness and efficiency of the proposed methods.
引用
收藏
页码:2719 / 2744
页数:26
相关论文
共 64 条
  • [1] Ablowitz M. J., 2011, NONLINEAR DISPERSIVE, DOI DOI 10.1017/CBO9780511998324
  • [2] Structure-preserving Gauss methods for the nonlinear Schrodinger equation
    Akrivis, Georgios
    Li, Dongfang
    [J]. CALCOLO, 2021, 58 (02)
  • [3] Scalar Auxiliary Variable/Lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrodinger/Gross-Pitaevskii equations
    Antoine, Xavier
    Shen, Jie
    Tang, Qinglin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 437
  • [4] High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrodinger/Gross-Pitaevskii equations
    Antoine, Xavier
    Besse, Christophe
    Rispoli, Vittorio
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 252 - 269
  • [5] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167
  • [6] Bai G., 2024, SIAM J. Sci. Comput., V46, pA1026, DOI [10.1137/22M152178X, DOI 10.1137/22M152178X]
  • [7] A relaxation scheme for the nonlinear Schrodinger equation
    Besse, C
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 934 - 952
  • [8] Energy-preserving methods for nonlinear Schrodinger equations
    Besse, Christophe
    Descombes, Stephane
    Dujardin, Guillaume
    Lacroix-Violet, Ingrid
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 618 - 653
  • [9] GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION
    BIALYNICKIBIRULA, I
    MYCIELSKI, J
    [J]. PHYSICA SCRIPTA, 1979, 20 (3-4): : 539 - 544
  • [10] Multiple-Relaxation Runge Kutta Methods for Conservative Dynamical Systems
    Biswas, Abhijit
    Ketcheson, David I. I.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (01)