LGTCN: A Spatial-Temporal Traffic Flow Prediction Model Based on Local-Global Feature Fusion Temporal Convolutional Network

被引:0
|
作者
Ye, Wei [1 ]
Kuang, Haoxuan [1 ]
Deng, Kunxiang [1 ]
Zhang, Dongran [2 ]
Li, Jun [1 ]
机构
[1] Sun Yat sen Univ, Sch Intelligent Syst Engn, Shenzhen 518107, Peoples R China
[2] China Mobile Internet Co Ltd, Guangzhou 510510, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 19期
关键词
traffic flow prediction; spatial-temporal feature; local-global feature fusion; probabilistic sparse self-attention; temporal convolutional network;
D O I
10.3390/app14198847
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-precision traffic flow prediction facilitates intelligent traffic control and refined management decisions. Previous research has built a variety of exquisite models with good prediction results. However, they ignore the reality that traffic flows can propagate backwards on road networks when modeling spatial relationships, as well as associations between distant nodes. In addition, more effective model components for modeling temporal relationships remain to be developed. To address the above challenges, we propose a local-global features fusion temporal convolutional network (LGTCN) for spatio-temporal traffic flow prediction, which incorporates a bidirectional graph convolutional network, probabilistic sparse self-attention, and a multichannel temporal convolutional network. To extract the bidirectional propagation relationship of traffic flow on the road network, we improve the traditional graph convolutional network so that information can be propagated in multiple directions. In addition, in spatial global dimensions, we propose probabilistic sparse self-attention to effectively perceive global data correlations and reduce the computational complexity caused by the finite perspective graph. Furthermore, we develop a multichannel temporal convolutional network. It not only retains the temporal learning capability of temporal convolutional networks, but also corresponds each channel to a node, and it realizes the interaction of node features through output interoperation. Extensive experiments on four open access benchmark traffic flow datasets demonstrate the effectiveness of our model.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Liu, Tao
    Jiang, Aimin
    Zhou, Jia
    Li, Min
    Kwan, Hon Keung
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 11210 - 11224
  • [42] Traffic Matrix Prediction in SDN based on Spatial-Temporal Residual Graph Convolutional Network
    Wang, Xintong
    Sun, Yibo
    Wang, Xuan
    Wang, Enliang
    Sun, Zhixin
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3382 - 3387
  • [43] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [44] An effective spatial-temporal attention based neural network for traffic flow prediction
    Do, Loan N. N.
    Vu, Hai L.
    Vo, Bao Q.
    Liu, Zhiyuan
    Dinh Phung
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 108 : 12 - 28
  • [45] A Hybrid Transformer-based Spatial-Temporal Network for Traffic Flow Prediction
    Tian, Guanqun
    Li, Dequan
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [46] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Gao, Ming
    Du, Zhuoran
    Qin, Hongmao
    Wang, Wei
    Jin, Guangyin
    Xie, Guotao
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [47] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Li, Kuan-Ching
    Zomaya, Albert Y.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 323 - 332
  • [48] Spatial-temporal clustering enhanced multi-graph convolutional network for traffic flow prediction
    Bao, Yinxin
    Shen, Qinqin
    Cao, Yang
    Shi, Quan
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [49] STFEformer: Spatial-Temporal Fusion Embedding Transformer for Traffic Flow Prediction
    Yang, Hanqing
    Wei, Sen
    Wang, Yuanqing
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [50] Adaptive Spatial-Temporal Fusion Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Senwen
    Ge, Liang
    Lin, Yongquan
    Zeng, Bo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,