A Comparative Analysis of Remote Sensing Soil Moisture Datasets Fusion Methods: Novel LSTM Approach Versus Widely Used Triple Collocation Technique

被引:1
作者
Zhao, Haojin [1 ,2 ,3 ]
Montzka, Carsten [2 ]
Vereecken, Harry [1 ,2 ]
Franssen, Harrie-Jan Hendricks [1 ]
机构
[1] Forschungszentrum Julich, Inst Bio & Geosci Agrosphere, D-52425 Julich, Germany
[2] HPSC TerrSys, Ctr High Performance Sci Comp Terr Syst, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, D-52062 Aachen, Germany
关键词
Soil moisture; Remote sensing; Soil; Long short term memory; Moisture; Microwave radiometry; Soil measurements; Data fusion; long short term memory model; remote sensing; satellites; soil moisture; triple collocation; AMSR-E; SMAP; RETRIEVAL; NETWORK; CALIBRATION; PRODUCTS; SMOS; VALIDATION; INFORMATION; PERFORMANCE;
D O I
10.1109/JSTARS.2024.3455549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microwave remote sensing technology has emerged to provide valuable products to monitor and assess soil moisture content at regional or global scales. However, each soil moisture product exhibits different advantages and shortcomings. Data fusion could help improve accuracy by merging information from different sources. In this research, a traditional triple collocation (TC) based method and a novel long short term memory network (LSTM) are used to merge soil moisture products from the soil moisture active passive mission, Advanced Microwave Scanning Radiometer 2 (AMSR2), and The Advanced SCATterometer for a study area located in western Europe. This research reveals that the LSTM outperforms the traditional TC based method for data fusion. The study identifies that both climate forcing and physiographic attributes significantly influence the spatial and temporal variations observed in the LSTM merging scheme. Consequently, the study highlights the considerable potential of the LSTM method for large-scale integration of remote sensing soil moisture data.
引用
收藏
页码:16659 / 16671
页数:13
相关论文
共 90 条
  • [1] Towards an integrated soil moisture drought monitor for East Africa
    Anderson, W. B.
    Zaitchik, B. F.
    Hain, C. R.
    Anderson, M. C.
    Yilmaz, M. T.
    Mecikalski, J.
    Schultz, L.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (08) : 2893 - 2913
  • [2] Evaluation of Multiscale SMAP Soil Moisture Products in Forested Environments
    Andreadis, Konstantinos M.
    Meason, Dean F.
    Hock, Barbara
    Lad, Priscilla
    Das, Narendra
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Validation of SMAP Soil Moisture at Terrestrial National Ecological Observatory Network (NEON) Sites Show Potential for Soil Moisture Retrieval in Forested Areas
    Ayres, Edward
    Colliander, Andreas
    Cosh, Michael H.
    Roberti, Joshua A.
    Simkin, Sam
    Genazzio, Melissa A.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10903 - 10918
  • [4] Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods
    Baatz, R.
    Bogena, H. R.
    Franssen, H. -J. Hendricks
    Huisman, J. A.
    Qu, W.
    Montzka, C.
    Vereecken, H.
    [J]. JOURNAL OF HYDROLOGY, 2014, 516 : 231 - 244
  • [5] Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning
    Babaeian, Ebrahim
    Paheding, Sidike
    Siddique, Nahian
    Devabhaktuni, Vijay K.
    Tuller, Markus
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 260 (260)
  • [6] Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques
    Barrett, Brian W.
    Dwyer, Edward
    Whelan, Padraig
    [J]. REMOTE SENSING, 2009, 1 (03) : 210 - 242
  • [7] Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT)
    Bartalis, Zoltan
    Wagner, Wolfgang
    Naeimi, Vahid
    Hasenauer, Stefan
    Scipal, Klaus
    Bonekamp, Hans
    Figa, Julia
    Anderson, Craig
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (20)
  • [8] A Deep Learning Data Fusion Model Using Sentinel-1/2, SoilGrids, SMAP, and GLDAS for Soil Moisture Retrieval
    Batchu, Vishal
    Nearing, Grey
    Gulshan, Varun
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (10) : 1789 - 1823
  • [9] WoSIS: providing standardised soil profile data for the world
    Batjes, Niels H.
    Ribeiro, Eloi
    van Oostrum, Ad
    Leenaars, Johan
    Hengl, Tom
    de Jesus, Jorge Mendes
    [J]. EARTH SYSTEM SCIENCE DATA, 2017, 9 (01) : 1 - 14
  • [10] Baur M, 2018, INT GEOSCI REMOTE SE, P365, DOI 10.1109/IGARSS.2018.8517438