LVAR-CZSL: Learning Visual Attributes Representation for Compositional Zero-Shot Learning

被引:0
|
作者
Ma, Xingjiang [1 ]
Yang, Jing [1 ,2 ]
Lin, Jiacheng [3 ]
Zheng, Zhenzhe [4 ]
Li, Shaobo [1 ]
Hu, Bingqi [1 ]
Tang, Xianghong [1 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[4] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Visualization; Feature extraction; Dogs; Task analysis; Attention mechanisms; Zero-shot learning; Circuits and systems; Compositional zero-shot learning; visual attributes; objects and attributes; inter-class connectivity; OBJECTS;
D O I
10.1109/TCSVT.2024.3444782
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compositional Zero-Shot Learning (CZSL) has been applied to various scenarios, including scene understanding, visual-language representation, and domain adaptation. Despite numerous endeavours and significant advancements, the crucial issues of fuzzy conceptualization of visual attributes and insufficient inter-class connectivity, have remained insufficiently addressed. To address these issues, we propose Learning Visual Attributes Representation for Compositional Zero-Shot Learning (LVAR-CZSL), which has the ability to learn visual attributes and inter-class dependencies. LVAR-CZSL is mainly composed of two key components: the Visual Attribute Representation Module (VARM) and the Connected Learning Module (CLM). Specifically, VARM extracts detailed attributes and object visual features from global visual features, resolving the issue of fuzzy visual attribute concepts. Moreover, CLM endows LVAR-CZSL with the capability to perceive connectivity between different attributes and objects, effectively enhancing inter-class connectivity. To establish a close connection between VARM and CLM and minimize the gap between image and text features, we introduce the composition-attribute-object Joint Scoring Function (JSF). Additionally, we propose Joint Loss Function (JLF) to optimize the learning process of VARM and CLM. The experiment results on four datasets show that LVAR-CZSL achieves state-of-the-art performance. The code is available at https://github.com/mxjmxj1/LVAR-CZSL.
引用
收藏
页码:13311 / 13323
页数:13
相关论文
共 50 条
  • [41] Beyond Semantic Attributes: Discrete Latent Attributes Learning for Zero-Shot Recognition
    Qin, Jie
    Wang, Yunhong
    Liu, Li
    Chen, Jiaxin
    Shao, Ling
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1667 - 1671
  • [42] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198
  • [43] PMGNet: Disentanglement and entanglement benefit mutually for compositional zero-shot learning
    Liu, Yu
    Li, Jianghao
    Zhang, Yanyi
    Jia, Qi
    Wang, Weimin
    Pu, Nan
    Sebe, Nicu
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [44] Zero-Shot Deep Domain Adaptation With Common Representation Learning
    Kutbi, Mohammed
    Peng, Kuan-Chuan
    Wu, Ziyan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3909 - 3924
  • [45] Dual-Stream Contrastive Learning for Compositional Zero-Shot Recognition
    Yang, Yanhua
    Pan, Rui
    Li, Xiangyu
    Yang, Xu
    Deng, Cheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1909 - 1919
  • [46] Object-Aware Image Augmentation for Audio-Visual Zero-Shot Learning
    Dong, Yujie
    Chen, Shiming
    Duan, Bowen
    Ding, Weiping
    Wang, Yisong
    You, Xinge
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [47] On Implicit Attribute Localization for Generalized Zero-Shot Learning
    Yang, Shiqi
    Wang, Kai
    Herranz, Luis
    van de Weijer, Joost
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 872 - 876
  • [48] Zero-Shot Learning for Intrusion Detection via Attribute Representation
    Li, Zhipeng
    Qin, Zheng
    Shen, Pengbo
    Jiang, Liu
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 352 - 364
  • [49] Deep Unbiased Embedding Transfer for Zero-Shot Learning
    Jia, Zhen
    Zhang, Zhang
    Wang, Liang
    Shan, Caifeng
    Tan, Tieniu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1958 - 1971
  • [50] Language-Augmented Pixel Embedding for Generalized Zero-Shot Learning
    Wang, Ziyang
    Gou, Yunhao
    Li, Jingjing
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (03) : 1019 - 1030