Joint Computation Offloading and Resource Allocation in Multi-Edge Smart Communities With Personalized Federated Deep Reinforcement Learning

被引:14
|
作者
Chen, Zheyi [1 ]
Xiong, Bing [1 ]
Chen, Xing [1 ]
Min, Geyong [2 ]
Li, Jie [3 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Univ Exeter, Fac Environm Sci & Econ, Dept Comp Sci, Exeter, England
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Resource management; Task analysis; Smart cities; Servers; Quality of service; Delays; Mobile edge computing; computation offloading; resource allocation; deep reinforcement learning; personalized federated learning; EDGE; MEC; BLOCKCHAIN; NETWORKS;
D O I
10.1109/TMC.2024.3396511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Through deploying computing resources at the network edge, Mobile Edge Computing (MEC) alleviates the contradiction between the high requirements of intelligent mobile applications and the limited capacities of mobile End Devices (EDs) in smart communities. However, existing solutions of computation offloading and resource allocation commonly rely on prior knowledge or centralized decision-making, which cannot adapt to dynamic MEC environments with changeable system states and personalized user demands, resulting in degraded Quality-of-Service (QoS) and excessive system overheads. To address this important challenge, we propose a novel Personalized Federated deep Reinforcement learning based computation Offloading and resource Allocation method (PFR-OA). This innovative PFR-OA considers the personalized demands in smart communities when generating proper policies of computation offloading and resource allocation. To relieve the negative impact of local updates on global model convergence, we design a new proximal term to improve the manner of only optimizing local Q-value loss functions in classic reinforcement learning. Moreover, we develop a new partial-greedy based participant selection mechanism to reduce the complexity of federated aggregation while endowing sufficient exploration. Using real-world system settings and testbed, extensive experiments demonstrate the effectiveness of the PFR-OA. Compared to benchmark methods, the PFR-OA achieves better trade-offs between delay and energy consumption and higher task execution success rates under different scenarios.
引用
收藏
页码:11604 / 11619
页数:16
相关论文
共 50 条
  • [41] Federated Learning for Online Resource Allocation in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Zheng, Jingjing
    Li, Kai
    Mhaisen, Naram
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [42] Joint Computation Offloading and Resource Configuration in Ultra-Dense Edge Computing Networks: A Deep Reinforcement Learning Solution
    Lv, Jianfeng
    Xiong, Jingyu
    Guo, Hongzhi
    Liu, Jiajia
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [43] Joint computation offloading and resource allocation in vehicular edge computing networks
    Shuang Liu
    Jie Tian
    Chao Zhai
    Tiantian Li
    Digital Communications and Networks, 2023, 9 (06) : 1399 - 1410
  • [44] Joint computation offloading and resource allocation in vehicular edge computing networks
    Liu, Shuang
    Tian, Jie
    Zhai, Chao
    Li, Tiantian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (06) : 1399 - 1410
  • [45] Joint Optimization of Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    2020 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (EDGE 2020), 2020, : 76 - 82
  • [46] Joint Optimization on Computation Offloading and Resource Allocation in Mobile Edge Computing
    Zhang, Kaiyuan
    Gui, Xiaolin
    Ren, Dewang
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [47] Joint Computation Offloading and Resource Allocation in UAV Swarms with Multi-access Edge Computing
    Liu, Wanning
    Xu, Yitao
    Qi, Nan
    Yao, Kailing
    Zhang, Yuli
    He, Wenhui
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 280 - 285
  • [48] Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Wang, Jiadai
    Zhao, Lei
    Liu, Jiajia
    Kato, Nei
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (03) : 1529 - 1541
  • [49] Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Liu, Jiajia (liujiajia@nwpu.edu.cn), 1600, IEEE Computer Society (09):
  • [50] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353