Joint Computation Offloading and Resource Allocation in Multi-Edge Smart Communities With Personalized Federated Deep Reinforcement Learning

被引:18
作者
Chen, Zheyi [1 ]
Xiong, Bing [1 ]
Chen, Xing [1 ]
Min, Geyong [2 ]
Li, Jie [3 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Univ Exeter, Fac Environm Sci & Econ, Dept Comp Sci, Exeter, England
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Resource management; Task analysis; Smart cities; Servers; Quality of service; Delays; Mobile edge computing; computation offloading; resource allocation; deep reinforcement learning; personalized federated learning; EDGE; MEC; BLOCKCHAIN; NETWORKS;
D O I
10.1109/TMC.2024.3396511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Through deploying computing resources at the network edge, Mobile Edge Computing (MEC) alleviates the contradiction between the high requirements of intelligent mobile applications and the limited capacities of mobile End Devices (EDs) in smart communities. However, existing solutions of computation offloading and resource allocation commonly rely on prior knowledge or centralized decision-making, which cannot adapt to dynamic MEC environments with changeable system states and personalized user demands, resulting in degraded Quality-of-Service (QoS) and excessive system overheads. To address this important challenge, we propose a novel Personalized Federated deep Reinforcement learning based computation Offloading and resource Allocation method (PFR-OA). This innovative PFR-OA considers the personalized demands in smart communities when generating proper policies of computation offloading and resource allocation. To relieve the negative impact of local updates on global model convergence, we design a new proximal term to improve the manner of only optimizing local Q-value loss functions in classic reinforcement learning. Moreover, we develop a new partial-greedy based participant selection mechanism to reduce the complexity of federated aggregation while endowing sufficient exploration. Using real-world system settings and testbed, extensive experiments demonstrate the effectiveness of the PFR-OA. Compared to benchmark methods, the PFR-OA achieves better trade-offs between delay and energy consumption and higher task execution success rates under different scenarios.
引用
收藏
页码:11604 / 11619
页数:16
相关论文
共 50 条
  • [31] Computation Offloading and Resource Allocation in Satellite-Terrestrial Integrated Networks: A Deep Reinforcement Learning Approach
    Xie, Junfeng
    Jia, Qingmin
    Chen, Youxing
    Wang, Wei
    IEEE ACCESS, 2024, 12 : 97184 - 97195
  • [32] Joint Task and Computing Resource Allocation in Distributed Edge Computing Systems via Multi-Agent Deep Reinforcement Learning
    Chen, Yan
    Sun, Yanjing
    Yu, Hao
    Taleb, Tarik
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (04): : 3479 - 3494
  • [33] Federated Deep Reinforcement Learning for Task Offloading in Digital Twin Edge Networks
    Dai, Yueyue
    Zhao, Jintang
    Zhang, Jing
    Zhang, Yan
    Jiang, Tao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 2849 - 2863
  • [34] Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach
    Ju, Ying
    Chen, Yuchao
    Cao, Zhiwei
    Liu, Lei
    Pei, Qingqi
    Xiao, Ming
    Ota, Kaoru
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5555 - 5569
  • [35] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [36] Joint Offloading and Resource Allocation for Multi-User Multi-Edge Collaborative Computing System
    Gao, Zihan
    Hao, Wanming
    Yang, Shouyi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 3383 - 3388
  • [37] BiLSTM-based Federated Learning Computation Offloading and Resource Allocation Algorithm in MEC
    Zhang, Xiangjun
    Wu, Weiguo
    Wang, Jinyu
    Liu, Song
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2023, 19 (03)
  • [38] Joint Device Participation, Dataset Management, and Resource Allocation in Wireless Federated Learning via Deep Reinforcement Learning
    Chen, Jinlian
    Zhang, Jun
    Zhao, Nan
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4505 - 4510
  • [39] Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
    Li, Shuyang
    Hu, Xiaohui
    Du, Yongwen
    SENSORS, 2021, 21 (19)
  • [40] Code Caching-Assisted Computation Offloading and Resource Allocation for Multi-User Mobile Edge Computing
    Chen, Zhixiong
    Zhou, Zhaokun
    Chen, Chen
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (04): : 4517 - 4530