Joint Computation Offloading and Resource Allocation in Multi-Edge Smart Communities With Personalized Federated Deep Reinforcement Learning

被引:14
|
作者
Chen, Zheyi [1 ]
Xiong, Bing [1 ]
Chen, Xing [1 ]
Min, Geyong [2 ]
Li, Jie [3 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Univ Exeter, Fac Environm Sci & Econ, Dept Comp Sci, Exeter, England
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Resource management; Task analysis; Smart cities; Servers; Quality of service; Delays; Mobile edge computing; computation offloading; resource allocation; deep reinforcement learning; personalized federated learning; EDGE; MEC; BLOCKCHAIN; NETWORKS;
D O I
10.1109/TMC.2024.3396511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Through deploying computing resources at the network edge, Mobile Edge Computing (MEC) alleviates the contradiction between the high requirements of intelligent mobile applications and the limited capacities of mobile End Devices (EDs) in smart communities. However, existing solutions of computation offloading and resource allocation commonly rely on prior knowledge or centralized decision-making, which cannot adapt to dynamic MEC environments with changeable system states and personalized user demands, resulting in degraded Quality-of-Service (QoS) and excessive system overheads. To address this important challenge, we propose a novel Personalized Federated deep Reinforcement learning based computation Offloading and resource Allocation method (PFR-OA). This innovative PFR-OA considers the personalized demands in smart communities when generating proper policies of computation offloading and resource allocation. To relieve the negative impact of local updates on global model convergence, we design a new proximal term to improve the manner of only optimizing local Q-value loss functions in classic reinforcement learning. Moreover, we develop a new partial-greedy based participant selection mechanism to reduce the complexity of federated aggregation while endowing sufficient exploration. Using real-world system settings and testbed, extensive experiments demonstrate the effectiveness of the PFR-OA. Compared to benchmark methods, the PFR-OA achieves better trade-offs between delay and energy consumption and higher task execution success rates under different scenarios.
引用
收藏
页码:11604 / 11619
页数:16
相关论文
共 50 条
  • [21] Cooperative Offloading and Resource Allocation Algorithm of Multi-Edge Nodes in VEC
    Peng W.
    Yang Y.
    Song C.
    Yan J.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (02): : 78 - 83
  • [22] Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach
    Ju, Ying
    Chen, Yuchao
    Cao, Zhiwei
    Liu, Lei
    Pei, Qingqi
    Xiao, Ming
    Ota, Kaoru
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5555 - 5569
  • [23] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [24] Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning
    Wang, Cong
    Wang, Yaoming
    Yuan, Ying
    Peng, Sancheng
    Li, Guorui
    Yin, Pengfei
    NEURAL NETWORKS, 2024, 179
  • [25] Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
    Li, Shuyang
    Hu, Xiaohui
    Du, Yongwen
    SENSORS, 2021, 21 (19)
  • [26] Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
    Liu, Yi
    Yu, Huimin
    Xie, Shengli
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11158 - 11168
  • [27] Deep reinforcement learning-based joint optimization of computation offloading and resource allocation in F-RAN
    Jo, Sonnam
    Kim, Ung
    Kim, Jaehyon
    Jong, Chol
    Pak, Changsop
    IET COMMUNICATIONS, 2023, 17 (05) : 549 - 564
  • [28] DEEP REINFORCEMENT LEARNING FOR COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN BLOCKCHAIN-BASED MULTI-UAV-ENABLED MOBILE EDGE COMPUTING
    Mohammed, Abegaz
    Nahom, Hayla
    Tewodros, Ayall
    Habtamu, Yasin
    Hayelow, Gebrye
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 295 - 299
  • [29] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [30] Q-Learning Algorithm for Joint Computation Offloading and Resource Allocation in Edge Cloud
    Dab, Boutheina
    Aitsaadi, Nadjib
    Langar, Rami
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,