Joint Computation Offloading and Resource Allocation in Multi-Edge Smart Communities With Personalized Federated Deep Reinforcement Learning

被引:18
作者
Chen, Zheyi [1 ]
Xiong, Bing [1 ]
Chen, Xing [1 ]
Min, Geyong [2 ]
Li, Jie [3 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Univ Exeter, Fac Environm Sci & Econ, Dept Comp Sci, Exeter, England
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Resource management; Task analysis; Smart cities; Servers; Quality of service; Delays; Mobile edge computing; computation offloading; resource allocation; deep reinforcement learning; personalized federated learning; EDGE; MEC; BLOCKCHAIN; NETWORKS;
D O I
10.1109/TMC.2024.3396511
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Through deploying computing resources at the network edge, Mobile Edge Computing (MEC) alleviates the contradiction between the high requirements of intelligent mobile applications and the limited capacities of mobile End Devices (EDs) in smart communities. However, existing solutions of computation offloading and resource allocation commonly rely on prior knowledge or centralized decision-making, which cannot adapt to dynamic MEC environments with changeable system states and personalized user demands, resulting in degraded Quality-of-Service (QoS) and excessive system overheads. To address this important challenge, we propose a novel Personalized Federated deep Reinforcement learning based computation Offloading and resource Allocation method (PFR-OA). This innovative PFR-OA considers the personalized demands in smart communities when generating proper policies of computation offloading and resource allocation. To relieve the negative impact of local updates on global model convergence, we design a new proximal term to improve the manner of only optimizing local Q-value loss functions in classic reinforcement learning. Moreover, we develop a new partial-greedy based participant selection mechanism to reduce the complexity of federated aggregation while endowing sufficient exploration. Using real-world system settings and testbed, extensive experiments demonstrate the effectiveness of the PFR-OA. Compared to benchmark methods, the PFR-OA achieves better trade-offs between delay and energy consumption and higher task execution success rates under different scenarios.
引用
收藏
页码:11604 / 11619
页数:16
相关论文
共 50 条
  • [1] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [2] Resource Allocation and Collaborative Offloading in Multi-UAV-Assisted IoV With Federated Deep Reinforcement Learning
    Chen, Zheyi
    Huang, Zhiqin
    Zhang, Junjie
    Cheng, Hongju
    Li, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4629 - 4640
  • [3] Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in Internet of Vehicles via Deep Reinforcement Learning
    Huang, Jiwei
    Wan, Jiangyuan
    Lv, Bofeng
    Ye, Qiang
    Chen, Ying
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2500 - 2511
  • [4] Computation Offloading via Multi-Agent Deep Reinforcement Learning in Aerial Hierarchical Edge Computing Systems
    Wang, Yuanyuan
    Zhang, Chi
    Ge, Taiheng
    Pan, Miao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5253 - 5266
  • [5] Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Wang, Jiadai
    Zhao, Lei
    Liu, Jiajia
    Kato, Nei
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (03) : 1529 - 1541
  • [6] Energy Efficient Joint Computation Offloading and Service Caching for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Zhou, Huan
    Zhang, Zhenyu
    Wu, Yuan
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (02): : 950 - 961
  • [7] Joint Optimization Strategy of Computation Offloading and Resource Allocation in Multi-Access Edge Computing Environment
    Li, Huilin
    Xu, Haitao
    Zhou, Chengcheng
    Lu, Xing
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (09) : 10214 - 10226
  • [8] Joint Service Caching, Computation Offloading and Resource Allocation in Mobile Edge Computing Systems
    Zhang, Guanglin
    Zhang, Shun
    Zhang, Wenqian
    Shen, Zhirong
    Wang, Lin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (08) : 5288 - 5300
  • [9] Federated Deep Reinforcement Learning for Online Task Offloading and Resource Allocation in WPC-MEC Networks
    Zang, Lianqi
    Zhang, Xin
    Guo, Boren
    IEEE ACCESS, 2022, 10 : 9856 - 9867
  • [10] Joint Computation Offloading and Resource Allocation for D2D-Assisted Mobile Edge Computing
    Jiang, Wei
    Feng, Daquan
    Sun, Yao
    Feng, Gang
    Wang, Zhenzhong
    Xia, Xiang-Gen
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (03) : 1949 - 1963