Towards real world stereo image super-resolution via hybrid degradation model and discriminator for implied stereo image information

被引:0
作者
Zhou, Yuanbo [1 ]
Xue, Yuyang [3 ]
Bi, Jiang [4 ]
He, Wenlin [4 ]
Zhang, Xinlin [1 ]
Zhang, Jiajun [1 ]
Deng, Wei [2 ]
Nie, Ruofeng [1 ]
Lan, Junlin [1 ]
Gao, Qinquan [1 ,2 ]
Tong, Tong [1 ,2 ]
机构
[1] Fuzhou Univ, Fuzhou 350108, Peoples R China
[2] Imperial Vis Technol, Fuzhou 350002, Peoples R China
[3] Univ Edinburgh, Edinburgh EH8 9YL, Scotland
[4] Beijing Radio & TV Stn, Beijing 10002, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereo image super-resolution; Real-world; Disparity; Visual perception;
D O I
10.1016/j.eswa.2024.124457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world stereo image super-resolution has a significant influence on enhancing the performance of computer vision systems. Although existing methods for single-image super-resolution can be applied to enhance stereo images, these methods often introduce notable modifications to the inherent disparity, resulting in a loss in the consistency of disparity between the original and the enhanced stereo images. To overcome this limitation, this paper proposes a novel approach that integrates an implicit stereo information discriminator and a hybrid degradation model. This combination ensures effective enhancement while preserving disparity consistency. The proposed method bridges the gap between the complex degradations in real-world stereo domain and the simpler degradations in real-world single-image super-resolution domain. Our results demonstrate impressive performance on synthetic and real datasets, enhancing visual perception while maintaining disparity consistency.
引用
收藏
页数:14
相关论文
共 74 条
  • [21] Enhancing the Spatial Resolution of Stereo Images using a Parallax Prior
    Jeon, Daniel S.
    Baek, Seung-Hwan
    Choi, Inchang
    Kim, Min H.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1721 - 1730
  • [22] Real-World Super-Resolution via Kernel Estimation and Noise Injection
    Ji, Xiaozhong
    Cao, Yun
    Tai, Ying
    Wang, Chengjie
    Li, Jilin
    Huang, Feiyue
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1914 - 1923
  • [23] SwiniPASSR: Swin Transformer based Parallax Attention Network for Stereo Image Super-Resolution
    Jin, Kai
    Wei, Zeqiang
    Yang, Angulia
    Guo, Sha
    Gao, Mingzhi
    Zhou, Xiuzhuang
    Guo, Guodong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 919 - 928
  • [24] Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]
  • [25] Kingma D.P., 2014, arXiv
  • [26] Optimizing Depth Perception in Virtual and Augmented Reality through Gaze-contingent Stereo Rendering
    Krajancich, Brooke
    Kellnhofer, Petr
    Wetzstein, Gordon
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [27] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
    Ledig, Christian
    Theis, Lucas
    Huszar, Ferenc
    Caballero, Jose
    Cunningham, Andrew
    Acosta, Alejandro
    Aitken, Andrew
    Tejani, Alykhan
    Totz, Johannes
    Wang, Zehan
    Shi, Wenzhe
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 105 - 114
  • [28] Deep Stereoscopic Image Super-Resolution via Interaction Module
    Lei, Jianjun
    Zhang, Zhe
    Fan, Xiaoting
    Yang, Bolan
    Li, Xinxin
    Chen, Ying
    Huang, Qingming
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (08) : 3051 - 3061
  • [29] Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution
    Liang, Jie
    Zeng, Hui
    Zhang, Lei
    [J]. COMPUTER VISION - ECCV 2022, PT XVIII, 2022, 13678 : 574 - 591
  • [30] SwinIR: Image Restoration Using Swin Transformer
    Liang, Jingyun
    Cao, Jiezhang
    Sun, Guolei
    Zhang, Kai
    Van Gool, Luc
    Timofte, Radu
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1833 - 1844