Towards real world stereo image super-resolution via hybrid degradation model and discriminator for implied stereo image information

被引:0
作者
Zhou, Yuanbo [1 ]
Xue, Yuyang [3 ]
Bi, Jiang [4 ]
He, Wenlin [4 ]
Zhang, Xinlin [1 ]
Zhang, Jiajun [1 ]
Deng, Wei [2 ]
Nie, Ruofeng [1 ]
Lan, Junlin [1 ]
Gao, Qinquan [1 ,2 ]
Tong, Tong [1 ,2 ]
机构
[1] Fuzhou Univ, Fuzhou 350108, Peoples R China
[2] Imperial Vis Technol, Fuzhou 350002, Peoples R China
[3] Univ Edinburgh, Edinburgh EH8 9YL, Scotland
[4] Beijing Radio & TV Stn, Beijing 10002, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereo image super-resolution; Real-world; Disparity; Visual perception;
D O I
10.1016/j.eswa.2024.124457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world stereo image super-resolution has a significant influence on enhancing the performance of computer vision systems. Although existing methods for single-image super-resolution can be applied to enhance stereo images, these methods often introduce notable modifications to the inherent disparity, resulting in a loss in the consistency of disparity between the original and the enhanced stereo images. To overcome this limitation, this paper proposes a novel approach that integrates an implicit stereo information discriminator and a hybrid degradation model. This combination ensures effective enhancement while preserving disparity consistency. The proposed method bridges the gap between the complex degradations in real-world stereo domain and the simpler degradations in real-world single-image super-resolution domain. Our results demonstrate impressive performance on synthetic and real datasets, enhancing visual perception while maintaining disparity consistency.
引用
收藏
页数:14
相关论文
共 74 条
  • [11] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [12] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
  • [13] Geiger A., 2015, The KITTI vision benchmark suite, P1
  • [14] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [15] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [16] Interpreting Super-Resolution Networks with Local Attribution Maps
    Gu, Jinjin
    Dong, Chao
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9195 - 9204
  • [17] Blind Super-Resolution With Iterative Kernel Correction
    Gu, Jinjin
    Lu, Hannan
    Zuo, Wangmeng
    Dong, Chao
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1604 - 1613
  • [18] SRDRL: A Blind Super-Resolution Framework With Degradation Reconstruction Loss
    He, Zongyao
    Jin, Zhi
    Zhao, Yao
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2877 - 2889
  • [19] Searching for MobileNetV3
    Howard, Andrew
    Sandler, Mark
    Chu, Grace
    Chen, Liang-Chieh
    Chen, Bo
    Tan, Mingxing
    Wang, Weijun
    Zhu, Yukun
    Pang, Ruoming
    Vasudevan, Vijay
    Le, Quoc V.
    Adam, Hartwig
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1314 - 1324
  • [20] DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks
    Ignatov, Andrey
    Kobyshev, Nikolay
    Timofte, Radu
    Vanhoey, Kenneth
    Luc Van Gool
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3297 - 3305