Towards real world stereo image super-resolution via hybrid degradation model and discriminator for implied stereo image information

被引:0
作者
Zhou, Yuanbo [1 ]
Xue, Yuyang [3 ]
Bi, Jiang [4 ]
He, Wenlin [4 ]
Zhang, Xinlin [1 ]
Zhang, Jiajun [1 ]
Deng, Wei [2 ]
Nie, Ruofeng [1 ]
Lan, Junlin [1 ]
Gao, Qinquan [1 ,2 ]
Tong, Tong [1 ,2 ]
机构
[1] Fuzhou Univ, Fuzhou 350108, Peoples R China
[2] Imperial Vis Technol, Fuzhou 350002, Peoples R China
[3] Univ Edinburgh, Edinburgh EH8 9YL, Scotland
[4] Beijing Radio & TV Stn, Beijing 10002, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereo image super-resolution; Real-world; Disparity; Visual perception;
D O I
10.1016/j.eswa.2024.124457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world stereo image super-resolution has a significant influence on enhancing the performance of computer vision systems. Although existing methods for single-image super-resolution can be applied to enhance stereo images, these methods often introduce notable modifications to the inherent disparity, resulting in a loss in the consistency of disparity between the original and the enhanced stereo images. To overcome this limitation, this paper proposes a novel approach that integrates an implicit stereo information discriminator and a hybrid degradation model. This combination ensures effective enhancement while preserving disparity consistency. The proposed method bridges the gap between the complex degradations in real-world stereo domain and the simpler degradations in real-world single-image super-resolution domain. Our results demonstrate impressive performance on synthetic and real datasets, enhancing visual perception while maintaining disparity consistency.
引用
收藏
页数:14
相关论文
共 74 条
  • [1] Ba JL., 2016, arXiv, DOI 10.48550/arXiv.1607.06450
  • [2] Blau Y., 2018, P EUR C COMP VIS WOR
  • [3] Cross Parallax Attention Network for Stereo Image Super-Resolution
    Chen, Canqiang
    Qing, Chunmei
    Xu, Xiangmin
    Dickinson, Patrick
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 202 - 216
  • [4] Activating More Pixels in Image Super-Resolution Transformer
    Chen, Xiangyu
    Wang, Xintao
    Zhou, Jiantao
    Qiao, Yu
    Dong, Chao
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22367 - 22377
  • [5] Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation
    Chen, Yu
    Shen, Chunhua
    Wei, Xiu-Shen
    Liu, Lingqiao
    Yang, Jian
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1221 - 1230
  • [6] NAFSSR: Stereo Image Super-Resolution Using NAFNet
    Chu, Xiaojie
    Chen, Liangyu
    Yu, Wenqing
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1238 - 1247
  • [7] Semantic Guided Long Range Stereo Depth Estimation for Safer Autonomous Vehicle Applications
    Chuah, Weiqin
    Tennakoon, Ruwan
    Hoseinnezhad, Reza
    Suter, David
    Bab-Hadiashar, Alireza
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18916 - 18926
  • [8] Self-Supervised Online Learning for Safety-Critical Control using Stereo Vision
    Cosner, Ryan K.
    Rodriguez, Ivan D. Jimenez
    Molnar, Tamas G.
    Ubellacker, Wyatt
    Yue, Yisong
    Ames, Aaron D.
    Bouman, Katherine L.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 11487 - 11493
  • [9] Feedback Network for Mutually Boosted Stereo Image Super-Resolution and Disparity Estimation
    Dai, Qinyan
    Li, Juncheng
    Yi, Qiaosi
    Fang, Faming
    Zhang, Guixu
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1985 - 1993
  • [10] Accelerating the Super-Resolution Convolutional Neural Network
    Dong, Chao
    Loy, Chen Change
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 391 - 407