Resource-Efficient Ubiquitous Sensor Networks for Smart Agriculture: A Survey

被引:0
|
作者
Arif, Muhammad [1 ,2 ,3 ]
Maya, Juan Augusto [1 ,2 ,4 ,5 ,6 ]
Anandan, Narendiran
Perez, Dailys Arronde [2 ,7 ]
Tonello, Andrea M. [1 ]
Zangl, Hubert [2 ,7 ]
Rinner, Bernhard [1 ]
机构
[1] Univ Klagenfurt, Inst Networked & Embedded Syst, A-9020 Klagenfurt, Austria
[2] AAU SAL USE Lab, Silicon Austria Labs, A-9020 Klagenfurt, Austria
[3] Tech Univ Dresden, Inst Acoust & Speech Commun, D-01069 Dresden, Germany
[4] Vienna Bioctr VBC, Res Inst Mol Pathol IMP, A-1030 Vienna, Austria
[5] Univ Buenos Aires, Fac Ingn, C1063ACV, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Simulac Computac CSC, C1425FQD, Buenos Aires, Argentina
[7] Univ Klagenfurt, Inst Smart Syst Technol, A-9020 Klagenfurt, Austria
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Surveys; Sensors; Robot sensing systems; Optimization; Agriculture; Costs; Cloud computing; Wireless sensor networks; Smart agriculture; Batteries; Ubiquitous sensor networks; smart agriculture; resource optimization techniques; environmental monitoring; data analytics; Internet of Things (IoT) in agriculture; SEMANTIC COMMUNICATION; PRECISION AGRICULTURE; ENERGY EFFICIENCY; WIRELESS SENSORS; DATA AGGREGATION; ARCHITECTURE; CLOUD; INTERNET; THINGS; EDGE;
D O I
10.1109/ACCESS.2024.3516814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smart agriculture is an enabling technology addressing the increasing challenges of efficiency, sustainability, and quality of food production. It requires rich data from the farming area at high spatial and temporal resolution. Although remote sensing systems have become readily available recently, in-situ sensing is still required to capture important properties of soil, crops, and their close environment. Ubiquitous sensor networks (USNs) provide a seamless and real-time in-situ sensing infrastructure that could overcome some limitations of smart agriculture. Resource efficiency is essential for USNs due to 1) the expected long operation time in typically resource-constrained environments, 2) the vast amount of captured and processed data, and 3) the ever-increasing application requirements. This survey comprehensively analyzes resource optimization techniques for USNs along three USN layers: the sensing, the communication & connectivity, and the processing & analysis layer. It discusses the application of these techniques in the smart agriculture domain and identifies current challenges and open research issues.
引用
收藏
页码:193332 / 193364
页数:33
相关论文
共 50 条
  • [41] Time-Domain Coding for Resource-Efficient Deep Neural Networks
    Avalos-Legaz, Sergio
    Ituero, Pablo
    2019 XXXIV CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS), 2019,
  • [42] Robust and Resource-Efficient Identification of Two Hidden Layer Neural Networks
    Fornasier, Massimo
    Klock, Timo
    Rauchensteiner, Michael
    CONSTRUCTIVE APPROXIMATION, 2022, 55 (01) : 475 - 536
  • [43] A resource-efficient QoS routing protocol for mobile ad hoc networks
    De, S
    Qiao, CM
    Das, SK
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2003, 3 (04): : 465 - 486
  • [44] Resource-efficient and robust group communication in mobile ad hoc networks
    Choi, DH
    Kim, KI
    Kim, SH
    APCC 2003: 9TH ASIA-PACIFIC CONFERENCE ON COMMUNICATION, VOLS 1-3, PROCEEDINGS, 2003, : 433 - 438
  • [45] Gating Mechanism in Deep Neural Networks for Resource-Efficient Continual Learning
    Jin, Hyundong
    Yun, Kimin
    Kim, Eunwoo
    IEEE ACCESS, 2022, 10 : 18776 - 18786
  • [46] Resource-efficient DAG Blockchain with Sharding for 6G Networks
    Xie, Jin
    Zhang, Ke
    Lu, YunLong
    Zhang, Yan
    IEEE NETWORK, 2022, 36 (01): : 189 - 196
  • [47] A Resource-Efficient Multiplierless Systolic Array Architecture for Convolutions in Deep Networks
    Parmar, Yashrajsinh
    Sridharan, K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (02) : 370 - 374
  • [48] Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks
    Kleyko, Denis
    Kheffache, Mansour
    Frady, E. Paxon
    Wiklund, Urban
    Osipov, Evgeny
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3777 - 3783
  • [49] Development of a Resource-efficient and Fault-tolerant Wireless Sensor Network System
    Liu, Xing
    Zhou, Haiying
    Xiong, Shengwu
    Hou, Kun Mean
    De Vaulx, Christophe
    Shi, Hongling
    2015 2ND INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING AND INTERNET OF THINGS (DCIT), 2015, : 122 - 127
  • [50] Resource-Efficient Continual Learning for Sensor-Based Human Activity Recognition
    Leite, Clayton Frederick Souza
    Xiao, Yu
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (06)