Resource-Efficient Ubiquitous Sensor Networks for Smart Agriculture: A Survey

被引:0
|
作者
Arif, Muhammad [1 ,2 ,3 ]
Maya, Juan Augusto [1 ,2 ,4 ,5 ,6 ]
Anandan, Narendiran
Perez, Dailys Arronde [2 ,7 ]
Tonello, Andrea M. [1 ]
Zangl, Hubert [2 ,7 ]
Rinner, Bernhard [1 ]
机构
[1] Univ Klagenfurt, Inst Networked & Embedded Syst, A-9020 Klagenfurt, Austria
[2] AAU SAL USE Lab, Silicon Austria Labs, A-9020 Klagenfurt, Austria
[3] Tech Univ Dresden, Inst Acoust & Speech Commun, D-01069 Dresden, Germany
[4] Vienna Bioctr VBC, Res Inst Mol Pathol IMP, A-1030 Vienna, Austria
[5] Univ Buenos Aires, Fac Ingn, C1063ACV, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Simulac Computac CSC, C1425FQD, Buenos Aires, Argentina
[7] Univ Klagenfurt, Inst Smart Syst Technol, A-9020 Klagenfurt, Austria
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Surveys; Sensors; Robot sensing systems; Optimization; Agriculture; Costs; Cloud computing; Wireless sensor networks; Smart agriculture; Batteries; Ubiquitous sensor networks; smart agriculture; resource optimization techniques; environmental monitoring; data analytics; Internet of Things (IoT) in agriculture; SEMANTIC COMMUNICATION; PRECISION AGRICULTURE; ENERGY EFFICIENCY; WIRELESS SENSORS; DATA AGGREGATION; ARCHITECTURE; CLOUD; INTERNET; THINGS; EDGE;
D O I
10.1109/ACCESS.2024.3516814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smart agriculture is an enabling technology addressing the increasing challenges of efficiency, sustainability, and quality of food production. It requires rich data from the farming area at high spatial and temporal resolution. Although remote sensing systems have become readily available recently, in-situ sensing is still required to capture important properties of soil, crops, and their close environment. Ubiquitous sensor networks (USNs) provide a seamless and real-time in-situ sensing infrastructure that could overcome some limitations of smart agriculture. Resource efficiency is essential for USNs due to 1) the expected long operation time in typically resource-constrained environments, 2) the vast amount of captured and processed data, and 3) the ever-increasing application requirements. This survey comprehensively analyzes resource optimization techniques for USNs along three USN layers: the sensing, the communication & connectivity, and the processing & analysis layer. It discusses the application of these techniques in the smart agriculture domain and identifies current challenges and open research issues.
引用
收藏
页码:193332 / 193364
页数:33
相关论文
共 50 条
  • [31] RESOURCE-EFFICIENT SEPARATION TRANSFORMER
    Della Libera, Luca
    Subakan, Cem
    Ravanelli, Mirco
    Cornell, Samuele
    Lepoutre, Frederic
    Grondin, Francois
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 761 - 765
  • [32] A resource-efficient event algebra
    Carlson, Jan
    Lisper, Bjorn
    SCIENCE OF COMPUTER PROGRAMMING, 2010, 75 (12) : 1215 - 1234
  • [33] SOICMOS-based smart gas sensor system for ubiquitous sensor networks
    Maeng, Sunglyul
    Guha, Prasanta
    Udrea, Florin
    Ali, Syed Z.
    Santra, Sumita
    Gardner, Julian
    Park, Jonghyurk
    Kim, Sang-Hyeob
    Moon, Seung Eon
    Park, Kang-Ho
    Kim, Jong-Dae
    Choi, Youngjin
    Milne, William I.
    ETRI JOURNAL, 2008, 30 (04) : 516 - 525
  • [34] Resource-efficient photonic networks for next-generation AI computing
    Oguz, Ilker
    Yildirim, Mustafa
    Hsieh, Jih-Liang
    Dinc, Niyazi Ulas
    Moser, Christophe
    Psaltis, Demetri
    LIGHT-SCIENCE & APPLICATIONS, 2025, 14 (01)
  • [35] Robust and Resource-Efficient Identification of Two Hidden Layer Neural Networks
    Massimo Fornasier
    Timo Klock
    Michael Rauchensteiner
    Constructive Approximation, 2022, 55 : 475 - 536
  • [36] Binarized Neural Networks for Resource-Efficient Hashing with Minimizing Quantization Loss
    Zheng, Feng
    Deng, Cheng
    Huang, Heng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1032 - 1040
  • [37] TRTRL: A localized resource-efficient learning algorithm for recurrent neural networks
    Budik, Danny
    Elhanany, Itamar
    IEEE MWSCAS'06: PROCEEDINGS OF THE 2006 49TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS,, 2006, : 371 - +
  • [38] Towards Resource-Efficient Application-Controlled Software Defined Networks
    Blendin, Jeremias
    Hausheer, David
    2014 IEEE 22ND INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2014, : 483 - 485
  • [39] Resource-Efficient Deep Neural Networks for Automotive Radar Interference Mitigation
    Rock, Johanna
    Roth, Wolfgang
    Toth, Mate
    Meissner, Paul
    Pernkopf, Franz
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (04) : 927 - 940
  • [40] Resource-efficient compact bed plasticulture reduces production risks and sustainably intensifies agriculture
    Kira Hansen
    Sanjay Shukla
    Johan Desaeger
    Sarah Strauss
    Fritz Roka
    Pamela Roberts
    Gregory Hendricks
    Antonio Castellano Hinojosa
    Katherine Hendricks
    Vijay P. Santikari
    npj Sustainable Agriculture, 3 (1):