Resource-Efficient Ubiquitous Sensor Networks for Smart Agriculture: A Survey

被引:0
|
作者
Arif, Muhammad [1 ,2 ,3 ]
Maya, Juan Augusto [1 ,2 ,4 ,5 ,6 ]
Anandan, Narendiran
Perez, Dailys Arronde [2 ,7 ]
Tonello, Andrea M. [1 ]
Zangl, Hubert [2 ,7 ]
Rinner, Bernhard [1 ]
机构
[1] Univ Klagenfurt, Inst Networked & Embedded Syst, A-9020 Klagenfurt, Austria
[2] AAU SAL USE Lab, Silicon Austria Labs, A-9020 Klagenfurt, Austria
[3] Tech Univ Dresden, Inst Acoust & Speech Commun, D-01069 Dresden, Germany
[4] Vienna Bioctr VBC, Res Inst Mol Pathol IMP, A-1030 Vienna, Austria
[5] Univ Buenos Aires, Fac Ingn, C1063ACV, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Simulac Computac CSC, C1425FQD, Buenos Aires, Argentina
[7] Univ Klagenfurt, Inst Smart Syst Technol, A-9020 Klagenfurt, Austria
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Surveys; Sensors; Robot sensing systems; Optimization; Agriculture; Costs; Cloud computing; Wireless sensor networks; Smart agriculture; Batteries; Ubiquitous sensor networks; smart agriculture; resource optimization techniques; environmental monitoring; data analytics; Internet of Things (IoT) in agriculture; SEMANTIC COMMUNICATION; PRECISION AGRICULTURE; ENERGY EFFICIENCY; WIRELESS SENSORS; DATA AGGREGATION; ARCHITECTURE; CLOUD; INTERNET; THINGS; EDGE;
D O I
10.1109/ACCESS.2024.3516814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smart agriculture is an enabling technology addressing the increasing challenges of efficiency, sustainability, and quality of food production. It requires rich data from the farming area at high spatial and temporal resolution. Although remote sensing systems have become readily available recently, in-situ sensing is still required to capture important properties of soil, crops, and their close environment. Ubiquitous sensor networks (USNs) provide a seamless and real-time in-situ sensing infrastructure that could overcome some limitations of smart agriculture. Resource efficiency is essential for USNs due to 1) the expected long operation time in typically resource-constrained environments, 2) the vast amount of captured and processed data, and 3) the ever-increasing application requirements. This survey comprehensively analyzes resource optimization techniques for USNs along three USN layers: the sensing, the communication & connectivity, and the processing & analysis layer. It discusses the application of these techniques in the smart agriculture domain and identifies current challenges and open research issues.
引用
收藏
页码:193332 / 193364
页数:33
相关论文
共 50 条
  • [21] Resource-Efficient Authenticated Data Sharing Mechanism for Smart Wearable Systems
    Tanveer, Muhammad
    Khan, Abd Ullah
    Ahmad, Musheer
    Nguyen, Tu N.
    Abd El-Latif, Ahmed A.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2525 - 2536
  • [22] Resource-efficient Virtual Network Function Placement in Operator Networks
    Song, Xue
    Zhang, Xiaoning
    Yu, Shui
    Jiao, Shundan
    Xu, Zhichao
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [23] On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks
    Roth, Wolfgang
    Pernkopf, Franz
    Schindler, Gunther
    Froening, Holger
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10297 - 10304
  • [24] A Resource-Efficient Inference Accelerator for Binary Convolutional Neural Networks
    Kim, Tae-Hwan
    Shin, Jihoon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (01) : 451 - 455
  • [25] Squeezing Correlated Neurons for Resource-Efficient Deep Neural Networks
    Ozen, Elbruz
    Orailoglu, Alex
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 52 - 68
  • [26] Resource-Efficient Convolutional Networks: A Survey on Model-, Arithmetic-, and Implementation-Level Techniques
    Lee, Junkyu
    Mukhanov, Lev
    Molahosseini, Amir Sabbagh
    Minhas, Umar
    Hua, Yang
    Del Rincon, Jesus Martinez
    Dichev, Kiril
    Hong, Cheol-Ho
    Vandierendonck, Hans
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [27] Resource-efficient adaptive Bayesian tracking of magnetic fields with a quantum sensor
    Craigie, K.
    Gauger, E. M.
    Altmann, Y.
    Bonato, C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (19)
  • [28] Optimal sensor channel selection for resource-efficient deep activity recognition
    Souza Leite, Clayton Frederick
    Xiao, Yu
    IPSN'21: PROCEEDINGS OF THE 20TH ACM/IEEE CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2021, : 371 - 383
  • [29] Software: Resource-efficient Development
    不详
    ATP MAGAZINE, 2021, (6-7): : 10 - 10
  • [30] Resource-efficient handling systems
    Brett, T.
    Heinrich, M.
    Seliger, G.
    WT Werkstattstechnik, 2012, 102 (09): : 603 - 608