A Hierarchical Knowledge Graph Embedding Framework for Link Prediction

被引:0
|
作者
Liu, Shuang [1 ]
Hou, Chengwang [1 ]
Meng, Jiana [1 ]
Chen, Peng [2 ]
Kolmanic, Simon [3 ]
机构
[1] Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian 116600, Peoples R China
[2] Dalian Neusoft Univ Informat, Sch Comp & Software, Dalian 116023, Peoples R China
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor 2000, Slovenia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Knowledge graphs; Semantics; Vectors; Training; Accuracy; Tail; Sampling methods; Predictive models; Measurement; Data mining; Knowledge graph embedding; knowledge graph completion; negative sampling; link prediction;
D O I
10.1109/ACCESS.2024.3502450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge graph embedding maps the semantics of entities and relations to a low-dimensional space by optimizing the vector distance between positive and negative triples. Traditional negative sampling techniques usually regard high-scoring triples as high-quality negative triples, but this not only easily introduces false negative triples, but also ignores important information in the graph structure. To address these issues, we propose an easily pluggable hierarchical knowledge graph embedding framework. High-quality corrupted entities are generated through semantic and structural information, and then margin estimation is used to generate high-quality negative triples, and the structural information of the entities is combined to perform link prediction on new facts. Experimental results show that our framework improves the performance of the original knowledge graph embedding model, in which the hierarchical subgraph negative sampling module outperforms other negative sampling techniques. The framework we proposed can be easily adapted to various knowledge graph embedding models and explain the prediction results.
引用
收藏
页码:173338 / 173350
页数:13
相关论文
共 50 条
  • [31] A Retrieve-and-Read Framework for Knowledge Graph Link Prediction
    Pahuja, Vardaan
    Wang, Boshi
    Latapie, Hugo
    Srinivasa, Jayanth
    Su, Yu
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1992 - 2002
  • [32] Multisource hierarchical neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Xue, Lixia
    Yang, Juan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [33] A lightweight CNN-based knowledge graph embedding model with channel attention for link prediction
    Zhou, Xin
    Guo, Jingnan
    Jiang, Liling
    Ning, Bo
    Wang, Yanhao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 9607 - 9624
  • [34] Knowledge graph embedding based on dynamic adaptive atrous convolution and attention mechanism for link prediction
    Deng, Weibin
    Zhang, Yiteng
    Yu, Hong
    Li, Hongxing
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [35] A Relation-Specific Entropy-Based Ensemble Approach for Knowledge Graph Embedding
    Jeon, Hwawoo
    Lim, Yoonseob
    Choi, Yong Suk
    IEEE ACCESS, 2024, 12 : 164652 - 164660
  • [36] HGCGE: hyperbolic graph convolutional networks-based knowledge graph embedding for link prediction
    Bao, Liming
    Wang, Yan
    Song, Xiaoyu
    Sun, Tao
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, : 661 - 687
  • [37] A Graph Neural Network for Ship Link Prediction Based on Graph Attention Mechanism and Quaternion Embedding
    Zhou, Jiaqi
    Yu, Wenxian
    Zhang, Jing
    Mu, Siyuan
    Li, Yan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [38] Position-Aware Relational Transformer for Knowledge Graph Embedding
    Li, Guangyao
    Sun, Zequn
    Hu, Wei
    Cheng, Gong
    Qu, Yuzhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11580 - 11594
  • [39] RotatHS: Rotation Embedding on the Hyperplane with Soft Constraints for Link Prediction on Knowledge Graph
    Le, Thanh
    Huynh, Ngoc
    Le, Bac
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 29 - 41
  • [40] Link Prediction on Knowledge Graph by Rotation Embedding on the Hyperplane in the Complex Vector Space
    Thanh Le
    Ngoc Huynh
    Bac Le
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 164 - 175