A Hierarchical Knowledge Graph Embedding Framework for Link Prediction

被引:0
|
作者
Liu, Shuang [1 ]
Hou, Chengwang [1 ]
Meng, Jiana [1 ]
Chen, Peng [2 ]
Kolmanic, Simon [3 ]
机构
[1] Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian 116600, Peoples R China
[2] Dalian Neusoft Univ Informat, Sch Comp & Software, Dalian 116023, Peoples R China
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor 2000, Slovenia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Knowledge graphs; Semantics; Vectors; Training; Accuracy; Tail; Sampling methods; Predictive models; Measurement; Data mining; Knowledge graph embedding; knowledge graph completion; negative sampling; link prediction;
D O I
10.1109/ACCESS.2024.3502450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge graph embedding maps the semantics of entities and relations to a low-dimensional space by optimizing the vector distance between positive and negative triples. Traditional negative sampling techniques usually regard high-scoring triples as high-quality negative triples, but this not only easily introduces false negative triples, but also ignores important information in the graph structure. To address these issues, we propose an easily pluggable hierarchical knowledge graph embedding framework. High-quality corrupted entities are generated through semantic and structural information, and then margin estimation is used to generate high-quality negative triples, and the structural information of the entities is combined to perform link prediction on new facts. Experimental results show that our framework improves the performance of the original knowledge graph embedding model, in which the hierarchical subgraph negative sampling module outperforms other negative sampling techniques. The framework we proposed can be easily adapted to various knowledge graph embedding models and explain the prediction results.
引用
收藏
页码:173338 / 173350
页数:13
相关论文
共 50 条
  • [1] Hierarchical-aware relation rotational knowledge graph embedding for link prediction
    Wang, Shensi
    Fu, Kun
    Sun, Xian
    Zhang, Zequn
    Li, Shuchao
    Jin, Li
    NEUROCOMPUTING, 2021, 458 (458) : 259 - 270
  • [2] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Wang, Kai
    Liu, Yu
    Xu, Xiujuan
    Sheng, Quan Z.
    COMPUTING, 2020, 102 (12) : 2587 - 2606
  • [3] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Kai Wang
    Yu Liu
    Xiujuan Xu
    Quan Z. Sheng
    Computing, 2020, 102 : 2587 - 2606
  • [4] Embedding based Link Prediction for Knowledge Graph Completion
    Biswas, Russa
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3221 - 3224
  • [5] Knowledge Graph Embedding for Link Prediction: A Comparative Analysis
    Rossi, Andrea
    Barbosa, Denilson
    Firmani, Donatella
    Matinata, Antonio
    Merialdo, Paolo
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (02)
  • [6] Comprehensive Analysis of Knowledge Graph Embedding Techniques Benchmarked on Link Prediction
    Ferrari, Ilaria
    Frisoni, Giacomo
    Italiani, Paolo
    Moro, Gianluca
    Sartori, Claudio
    ELECTRONICS, 2022, 11 (23)
  • [7] Evaluating diabetes dataset for knowledge graph embedding based link prediction
    Singh, Sushmita
    Siwach, Manvi
    DATA & KNOWLEDGE ENGINEERING, 2025, 157
  • [8] Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin?
    Portisch, Jan
    Heist, Nicolas
    Paulheim, Heiko
    SEMANTIC WEB, 2022, 13 (03) : 399 - 422
  • [9] A Federated Multi-Server Knowledge Graph Embedding Framework For Link Prediction
    Hu, Ce
    Liu, Baisong
    Zhang, Xueyuan
    Wang, Zhiye
    Lin, Chennan
    Luo, Linze
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 366 - 371
  • [10] Link Prediction Based on Data Augmentation and Metric Learning Knowledge Graph Embedding
    Duan, Lijuan
    Han, Shengwen
    Jiang, Wei
    He, Meng
    Qiao, Yuanhua
    APPLIED SCIENCES-BASEL, 2024, 14 (08):