A State Monitoring Algorithm for Data Missing Scenarios via Convolutional Neural Network and Random Forest

被引:1
作者
Xu, Yuntao [1 ]
Sun, Kai [2 ]
Zhang, Ying [2 ]
Chen, Fuyang [1 ]
He, Yi [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210000, Peoples R China
[2] Beijing Aerosp Automat Control Inst, Beijing 100000, Peoples R China
关键词
Feature extraction; Convolutional neural networks; Monitoring; Training; Autonomous aerial vehicles; Data mining; Spatiotemporal phenomena; Random forests; Data integrity; State monitoring; data missing; deep learning; convolutional neural network; random forest; DIAGNOSIS; FAULT; CNN; SYSTEMS;
D O I
10.1109/ACCESS.2024.3441244
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Unmanned Aerial Vehicle (UAV) systems, packet loss during sensor data transmission causes data missing, which reduces fault features in sensor signals and causes the accuracy of state monitoring to decrease. This study proposes a state monitoring algorithm combining a convolutional neural network (CNN) with a random forest (RF) for data missing scenarios. CNN algorithm is designed to extract the distributed fault information from the available signals and acquire the state features of the system. Random forest algorithm processes the state features and judges the system state. The integrating strategy utilizes the automatic feature extraction capability of CNN and the superior discrimination capability of an RF classifier to improve the state monitoring accuracy. The experimental results show that the accuracy of state monitoring in data missing condition reaches 92.74%. The comparative experiments verify the validity of the proposed algorithm.
引用
收藏
页码:137080 / 137088
页数:9
相关论文
共 50 条
[41]   Modeling of Flowering Time in Vigna radiata with Artificial Image Objects, Convolutional Neural Network and Random Forest [J].
Bavykina, Maria ;
Kostina, Nadezhda ;
Lee, Cheng-Ruei ;
Schafleitner, Roland ;
Bishop-von Wettberg, Eric ;
Nuzhdin, Sergey V. ;
Samsonova, Maria ;
Gursky, Vitaly ;
Kozlov, Konstantin .
PLANTS-BASEL, 2022, 11 (23)
[42]   A comparative study of decision tree, random forest, and convolutional neural network for spread-F identification [J].
Lan, Ting ;
Hu, Hui ;
Jiang, Chunhua ;
Yang, Guobin ;
Zhao, Zhengyu .
ADVANCES IN SPACE RESEARCH, 2020, 65 (08) :2052-2061
[43]   A Deep Convolutional Neural Network and a Random Forest Classifier for Solar Photovoltaic Array Detection in Aerial Imagery [J].
Malof, Jordan M. ;
Collins, Leslic M. ;
Bradbury, Kyle ;
Newell, Richard G. .
2016 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2016, :650-654
[44]   Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers [J].
Knauer, Uwe ;
von Rekowski, Cornelius Styp ;
Stecklina, Marianne ;
Krokotsch, Tilman ;
Tuan Pham Minh ;
Hauffe, Viola ;
Kilias, David ;
Ehrhardt, Ina ;
Sagischewski, Herbert ;
Chmara, Sergej ;
Seiffert, Udo .
REMOTE SENSING, 2019, 11 (23)
[45]   MarCNNet: A Markovian Convolutional Neural Network for Malware Detection and Monitoring Multi-Core Systems [J].
Yilmaz, Baki Berkay ;
Werner, Frank ;
Park, Sunjae Y. ;
Ugurlu, Elvan Mert ;
Jorgensen, Erik ;
Prvulovic, Milos ;
Zajic, Alenka .
IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (04) :1122-1135
[46]   Online Monitoring of Iron Ore Pellet Size Distribution Using Lightweight Convolutional Neural Network [J].
Deo, Arya Jyoti ;
Behera, Santosh Kumar ;
Das, Debi Prasad .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) :1974-1985
[47]   Deep Learning Seismic Random Noise Attenuation via Improved Residual Convolutional Neural Network [J].
Yang, Liuqing ;
Chen, Wei ;
Wang, Hang ;
Chen, Yangkang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7968-7981
[48]   SpectralSpatial Fractal Residual Convolutional Neural Network With Data Balance Augmentation for Hyperspectral Classification [J].
Zhang, Xin ;
Wang, Yongcheng ;
Zhang, Ning ;
Xu, Dongdong ;
Luo, Huiyuan ;
Chen, Bo ;
Ben, Guangli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12) :10473-10487
[49]   Classification of Pediatric Posterior Fossa Tumors Using Convolutional Neural Network and Tabular Data [J].
Artzi, Moran ;
Redmard, Erez ;
Tzemach, Oron ;
Zeltser, Jonathan ;
Gropper, Omri ;
Roth, Jonathan ;
Shofty, Ben ;
Kozyrev, Danil A. ;
Constantini, Shlomi ;
Ben-Sira, Liat .
IEEE ACCESS, 2021, 9 (09) :91966-91973
[50]   Data-Driven Intrusion Detection for Intelligent Internet of Vehicles: A Deep Convolutional Neural Network-Based Method [J].
Nie, Laisen ;
Ning, Zhaolong ;
Wang, Xiaojie ;
Hu, Xiping ;
Cheng, Jun ;
Li, Yongkang .
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04) :2219-2230