3D-printed energy harvesting devices for flexible and wearable electronics

被引:2
|
作者
Patil, Ishant G. [1 ]
Thakur, Kanik [1 ]
Nath, Sudhansu Sekhar [1 ]
Sundriyal, Poonam [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Printing & Flexible Device Mfg Lab, Kharagpur 721302, West Bengal, India
来源
SUSTAINABLE ENERGY & FUELS | 2024年 / 8卷 / 24期
关键词
TRIBOELECTRIC NANOGENERATOR; SOLAR-CELL; PIEZOELECTRIC PERFORMANCE; RENEWABLE ENERGY; HIGHLY-EFFICIENT; ORGANIC-DYE; INKJET; FABRICATION; GRAPHENE; PROGRESS;
D O I
10.1039/d4se00824c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ambient energy harvesting has great potential to contribute to sustainable development and address the emerging energy demands. Particularly, energy harvesting devices (EHDs) are attractive for powering self-powered wearable and smart electronics, where several challenges exist due to the use of traditional batteries. Despite the rapid advances in EHDs, their utilization in flexible and wearable self-powered electronics is limited due to traditional manufacturing processes. Solution-based 3-dimensional (3D) printing techniques have huge potential to improve the manufacturing of next-generation EHDs. This review focuses on the current status of 3D-printed EHDs for flexible and wearable devices. The inkjet printing and extrusion-based additive manufacturing processes can greatly improve the manufacturing of EHDs due to their capability to process a wide range of materials and design flexibility. Further, this review outlines the materials employed for fabricating different EHDs, such as piezoelectric nanogenerators (PENGs), triboelectric nanogenerators (TENGs), solar cells, and thermoelectric devices, and the recent challenges in their full utilization for flexible and wearable electronics. It also features recent notable results in the additive manufacturing of EHDs, existing challenges, and future scope. In general, the huge potential of 3D printing for the smart manufacturing of EHDs for next-generation self-powered wearable and implantable electronics has been summarized in this review.
引用
收藏
页码:5731 / 5767
页数:37
相关论文
共 50 条
  • [1] Graphene for energy harvesting/storage devices and printed electronics
    Grande, Lorenzo
    Chundi, Vishnu Teja
    Wei, Di
    Bower, Chris
    Andrew, Piers
    Ryhaenen, Tapani
    PARTICUOLOGY, 2012, 10 (01) : 1 - 8
  • [2] Biomechanical energy harvesting technologies for wearable electronics: Theories and devices
    Li, Xiaowen
    Zeng, Xu
    Li, Junwei
    Li, Boyuan
    Chen, Yu
    Zhang, Xiaosheng
    FRICTION, 2024, 12 (08) : 1655 - 1679
  • [3] 3D-printed electronics for biomedical applications
    Ryoo, Minsu
    Kim, Daeho
    Noh, Junseop
    Ahn, Song Ih
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (06) : 98 - 113
  • [4] 3D-printed bioanalytical devices
    Bishop, Gregory W.
    Satterwhite-Warden, Jennifer E.
    Kadimisetty, Karteek
    Rusling, James F.
    NANOTECHNOLOGY, 2016, 27 (28)
  • [5] 3D-printed interdigital electrodes for electrochemical energy storage devices
    Chen, Renpeng
    Chen, Yiming
    Xu, Lin
    Cheng, Yu
    Zhou, Xuan
    Cai, Yuyang
    Mai, Liqiang
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (22) : 4489 - 4507
  • [6] A review on extrusion-based 3D-printed nanogenerators for energy harvesting
    Wajahat, Muhammad
    Kouzani, Abbas Z.
    Khoo, Sui Yang
    Mahmud, M. A. Parvez
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (01) : 140 - 169
  • [7] Coaxial 3D-Printed and kirigami-inspired deployable wearable electronics for complex body surfaces
    Zhang, Shuaishuai
    Wang, Sheng
    Zheng, Yuxiang
    Yang, Run
    Dong, Erbao
    Lu, Liang
    Xuan, Shouhu
    Gong, Xinglong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 216
  • [8] 3D printing and 3D-printed electronics: Applications and future trends in smart drug delivery devices
    Ma, Wai Cheung
    Goh, Guo Liang
    Priyadarshini, Balasankar Meera
    Yeong, Wai Yee
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (04)
  • [9] Soldering of Electronics Components on 3D-Printed Conductive Substrates
    Podsiadly, Bartlomiej
    Skalski, Andrzej
    Sloma, Marcin
    MATERIALS, 2021, 14 (14)
  • [10] Selective metallic coating of 3D-printed microstructures on flexible substrates
    Huang, Kuan-Ming
    Tsai, Shang-Chen
    Lee, Yu-Kuan
    Yuan, Cheng-Kai
    Chang, Yu-Ching
    Chiu, Hsien-Lung
    Chung, Tien-Tung
    Liao, Ying-Chih
    RSC ADVANCES, 2017, 7 (81): : 51663 - 51669