Highly stable Zn anodes realized by 3D zincophilic and hydrophobic interphase buffer layer

被引:6
作者
Shen Y. [1 ]
Fu P. [2 ]
Liu J. [1 ]
Sun K. [1 ]
Wen H. [1 ]
Liu P. [1 ]
Lv H. [1 ]
Gu T. [1 ]
Yang X. [2 ]
Chen L. [1 ]
机构
[1] School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi
[2] Key Laboratory of Ecophysics, Department of Physics, College of Science, Shihezi University, Shihezi
来源
Nano Research Energy | 2024年 / 3卷 / 03期
基金
中国国家自然科学基金;
关键词
built-in electric field; heterostructure; hydrophobic; zinc anode; zincophilic;
D O I
10.26599/NRE.2024.9120115
中图分类号
学科分类号
摘要
Aqueous zinc-ion batteries (AZIBs) are promising contenders for energy storage systems owing to their low cost and high safety. However, their practical application is hindered by uncontrolled Zn dendrites and other side reactions. Here, the three-dimensional (3D) TiO2/Cu2Se/C heterostructure layer derived from MXene/Cu-MOF is constructed on the Zn anode to control the deposition/dissolution behavior, which has numerous active sites, better electrical conductivity and excellent structural stability. Based on DFT calculation, the built-in electric field (BIEF) formed of TiO2/Cu2Se/C can enhance charge transfer and ionic diffusion to inhibit the dendrites. Furthermore, hydrophobic coating has the ability to impede the corrosion and hydrogen evolution reaction (HER) of zinc anode. Thus, TiO2/Cu2Se/C@Zn enable the stable and reversible Zn plating/stripping process with the outstanding lifetime of 1100 h at 2 mA·cm–2 and even 650 h at 10 mA·cm–2. The batteries constructed with commercial MnO2 cathodes demonstrate the remarkable capacity (248.7 mAh·g−1 at 0.1 A·g−1) and impressive cycle stability (with 71.3% capacity retention after 300 cycles). As well as extending the life of AZIBs, this study is also motivating for other metal anode based secondary batteries. © The Author(s) 2024.
引用
收藏
相关论文
共 57 条
  • [1] Yi Z. H., Liu J. X., Tan S. D., Sang Z. Y., Mao J., Yin L. C., Liu X. G., Wang L. Q., Hou F., Dou S. X., Et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation (Adv. Mater. 37/2022), Adv. Mater, 34, (2022)
  • [2] Kim H. J., Kim S., Heo K., Lim J. H., Yashiro H., Myung S. T., Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery, Adv. Energy Mater, 13, (2023)
  • [3] Huang Y. F., Gu Q. Q., Guo Z. L., Liu W. B., Chang Z. W., Liu Y. F., Kang F. Y., Dong L. B., Xu C. J., Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study, Energy Storage Mater, 46, pp. 243-251, (2022)
  • [4] Liu S. Y., Zhou Y. H., Zhang Y. B., Xia S. J., Li Y., Zhou X., Qiu B., Shao G. J., Liu Z. P., Surface yttrium-doping induced by element segregation to suppress oxygen release in Li-rich layered oxide cathodes, Tungsten, 4, pp. 336-345, (2022)
  • [5] Sun K. S., Shen Y. F., Min J., Pang J. X., Zheng Y., Gu T. T., Wang G., Chen L., MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti<sub>3</sub>C<sub>2</sub>@Zn as anode for aqueous zinc-ion full battery, Chem. Eng. J, 454, (2023)
  • [6] Tian Y. D., Chen S., He Y. L., Chen Q. W., Zhang L. L., Zhang J. T., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries, Nano Res. Energy, 1, (2022)
  • [7] Xiong P. X., Kang Y. B., Yao N., Chen X., Mao H. Y., Jang W. S., Halat D. M., Fu Z. H., Jung M. H., Jeong H. Y., Et al., Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range, ACS Energy Lett, 8, pp. 1613-1625, (2023)
  • [8] Guo Y., Cai W. L., Lin Y., Zhang Y. Y., Luo S., Huang K. X., Wu H., Zhang Y., An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery, Energy Storage Mater, 50, pp. 580-588, (2022)
  • [9] Li Y., Peng X. Y., Li X., Duan H., Xie S. Y., Dong L. B., Kang F. Y., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage, Adv. Mater, 35, (2023)
  • [10] Liu X., Wang K., Liu Y., Zhao F. H., He J. J., Wu H., Wu J. F., Liang H. P., Huang C. S., Constructing an ion-oriented channel on a zinc electrode through surface engineering, Carbon Energy, (2023)