Entropy-enhanced fractional quantum anomalous Hall effect

被引:1
|
作者
Shavit, Gal [1 ,2 ,3 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
关键词
EDGE STATES; TRANSPORT;
D O I
10.1103/PhysRevB.110.L201406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Strongly interacting electrons in a topologically nontrivial band may form exotic phases of matter. An especially intriguing example of which is the fractional quantum anomalous Hall phase, recently discovered in twisted transition metal dichalcogenides and in moir & eacute; graphene multilayers. However, it has been shown to be destabilized in certain filling factors at sub-100 mK temperatures in pentalayer graphene, in favor of a novel integer quantum anomalous Hall phase [Z. Lu, Extended quantum anomalous Hall states in graphene/hBN moir & eacute; superlattices, arXiv:2408.10203]. We propose that the culprit stabilizing the fractional phase at higher temperatures is its rich edge state structure. Possessing a multiplicity of chiral modes on its edge, the fractional phase has lower free energy at higher temperatures due to the excess edge mode entropy. We make distinct predictions under this scenario, including the system-size dependency of the fractional phase entropic enhancement, and how the phase boundaries change as a function of temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Fractional quantum Hall effect and quantum symmetry
    Grensing, G
    PHYSICAL REVIEW B, 2000, 61 (08): : 5483 - 5498
  • [42] ANOMALOUS CYCLOTRON RESONANCE LINEWIDTH IN HETEROJUNCTIONS DISPLAYING THE FRACTIONAL QUANTUM HALL-EFFECT
    RIKKEN, GLJA
    MYRON, HW
    WYDER, P
    WEIMANN, G
    SCHLAPP, W
    HORSTMAN, RE
    WOLTER, J
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (08): : L175 - L179
  • [43] The connection between integer quantum hall effect and fractional quantum hall effect
    Koo, Je Huan
    Cho, Guangsup
    MODERN PHYSICS LETTERS B, 2007, 21 (2-3): : 109 - 113
  • [44] Integer and fractional quantum anomalous Hall effects in pentalayer graphene
    Xie, Ming
    Das Sarma, Sankar
    PHYSICAL REVIEW B, 2024, 109 (24)
  • [45] Fractional quantum Hall effect at ν = 2
    Balram, Ajit C.
    Wojs, A.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [46] FRACTIONAL QUANTUM HALL-EFFECT
    TSUI, DC
    PHYSICS TODAY, 1984, 37 (01) : S14 - S15
  • [47] THE FRACTIONAL QUANTUM HALL-EFFECT
    TSUI, DC
    STORMER, HL
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) : 1711 - 1719
  • [48] Introduction to the fractional quantum Hall effect
    Girvin, SM
    Quantum Hall Effect: Poincare Seminar 2004, 2005, 45 : 133 - 162
  • [49] The Fractional Quantum Hall Effect - Foreword
    Glattli, DC
    COMPTES RENDUS PHYSIQUE, 2002, 3 (06) : 665 - 666
  • [50] Fractional quantum Hall effect in CdTe
    Piot, B. A.
    Kunc, J.
    Potemski, M.
    Maude, D. K.
    Betthausen, C.
    Vogl, A.
    Weiss, D.
    Karczewski, G.
    Wojtowicz, T.
    PHYSICAL REVIEW B, 2010, 82 (08):