Entropy-enhanced fractional quantum anomalous Hall effect

被引:1
|
作者
Shavit, Gal [1 ,2 ,3 ]
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
关键词
EDGE STATES; TRANSPORT;
D O I
10.1103/PhysRevB.110.L201406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Strongly interacting electrons in a topologically nontrivial band may form exotic phases of matter. An especially intriguing example of which is the fractional quantum anomalous Hall phase, recently discovered in twisted transition metal dichalcogenides and in moir & eacute; graphene multilayers. However, it has been shown to be destabilized in certain filling factors at sub-100 mK temperatures in pentalayer graphene, in favor of a novel integer quantum anomalous Hall phase [Z. Lu, Extended quantum anomalous Hall states in graphene/hBN moir & eacute; superlattices, arXiv:2408.10203]. We propose that the culprit stabilizing the fractional phase at higher temperatures is its rich edge state structure. Possessing a multiplicity of chiral modes on its edge, the fractional phase has lower free energy at higher temperatures due to the excess edge mode entropy. We make distinct predictions under this scenario, including the system-size dependency of the fractional phase entropic enhancement, and how the phase boundaries change as a function of temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Topological insulators and fractional quantum Hall effect on the ruby lattice
    Hu, Xiang
    Kargarian, Mehdi
    Fiete, Gregory A.
    PHYSICAL REVIEW B, 2011, 84 (15):
  • [22] Anomalous Hall conductivity and quantum friction
    Streda, Pavel
    Vyborny, Karel
    PHYSICAL REVIEW B, 2023, 107 (01)
  • [23] Anomalous Charge Tunneling in Fractional Quantum Hall Edge States at a Filling Factor ν=5/2
    Carrega, M.
    Ferraro, D.
    Braggio, A.
    Magnoli, N.
    Sassetti, M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [24] Interplay of fractional quantum Hall states and localization in quantum point contacts
    Baer, S.
    Roessler, C.
    de Wiljes, E. C.
    Ardelt, P. -L.
    Ihn, T.
    Ensslin, K.
    Reichl, C.
    Wegscheider, W.
    PHYSICAL REVIEW B, 2014, 89 (08)
  • [25] Quantum transport in fractional quantum Hall edges
    Imura, K
    Nagaosa, N
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 420 - 425
  • [26] Proliferation of neutral modes in fractional quantum Hall states
    Inoue, Hiroyuki
    Grivnin, Anna
    Ronen, Yuval
    Heiblum, Moty
    Umansky, Vladimir
    Mahalu, Diana
    NATURE COMMUNICATIONS, 2014, 5
  • [27] Observation of neutral modes in the fractional quantum Hall regime
    Bid, Aveek
    Ofek, N.
    Inoue, H.
    Heiblum, M.
    Kane, C. L.
    Umansky, V.
    Mahalu, D.
    NATURE, 2010, 466 (7306) : 585 - 590
  • [28] Entanglement entropy for integer quantum Hall effect in two and higher dimensions
    Karabali, Dimitra
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [29] Abelian origin of ν=2/3 and 2+2/3 fractional quantum Hall effect
    Hu, Liangdong
    Zhu, W.
    PHYSICAL REVIEW B, 2022, 105 (16)
  • [30] Transport across the incompressible strip in the fractional quantum Hall effect regime
    Deviatov, E. V.
    Dolgopolov, V. T.
    Lorke, A.
    Reuter, D.
    Wieck, A. D.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05) : 1232 - 1234