Pathway to High Rate Capability in Interconnected Composite Electrolytes: A Case Study with a Single-Ion-Conducting Polymer

被引:0
|
作者
Sahore, Ritu [1 ]
Owensby, Kyra D. [1 ,2 ]
Armstrong, Beth L. [3 ]
Ock, Jiyoung [1 ]
Lehmann, Michelle L. [1 ]
Ullman, Andrew M. [1 ]
Kalnaus, Sergiy [4 ]
Chen, Xi Chelsea [1 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
来源
ACS APPLIED ENERGY MATERIALS | 2024年
关键词
solid-state battery; composite electrolyte; ceramic electrolyte; polymer/ceramic interface; single-ion conducting polymer; SOLID-STATE; LITHIUM; TRANSPORT; BATTERIES; NETWORKS;
D O I
10.1021/acsaem.4c01642
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In a three-dimensional interconnected polymer/ceramic composite electrolyte (3D composite), both the polymer and ceramic electrolyte phases are individually connected with a polymer-rich surface layer to provide conformal contact with the electrodes. This work investigates how the transference number of the polymer phase affects the electrochemical properties of the 3D composite. Here, we fabricate a 3D composite using a "single-ion" conducting polymer electrolyte (PE), Li1+x+y Al x Ti2-x Si y P3-y O12 (LICGC) ceramic, and compare its electrochemical properties with the neat polymer, and with a 3D composite made with a dual-ion-conducting PE (we reported previously). Our results reveal that changing the polymer phase from a dual-ion-conducting PE to a single-ion-conducting PE results in a 9-fold increase in the limiting current density, although the interfacial impedance between the polymer and LICGC ceramic remains high (and contributes significantly to the total impedance of the 3D composite). The limiting current density of the 3D composite is dictated by the PE and minimally affected by the ceramic scaffold. The ceramic scaffold, however, helps to ease the concentration gradient buildup within the PE and moderately improves the overall transference number. The LICGC scaffold does not provide any additional Li dendrite resistance due to its high reactivity with Li.
引用
收藏
页码:11714 / 11723
页数:10
相关论文
共 50 条
  • [1] Polymer-Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart
    Merrill, Laura C.
    Chen, Xi Chelsea
    Zhang, Yiman
    Ford, Hunter O.
    Lou, Kun
    Zhang, Yubin
    Yang, Guang
    Wang, Yangyang
    Wang, Yan
    Schaefer, Jennifer L.
    Dudney, Nancy J.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09): : 8871 - 8881
  • [2] Single-Ion-Conducting Gel Polymer Electrolyte Based on Lithiated Nafion
    Wu, Shuohao
    Wu, Mengjun
    Zhang, Haining
    Tang, Haolin
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (06) : 4266 - 4273
  • [3] Single-Ion-Conducting Polyether Electrolytes via Orthogonal Postpolymerization Modification
    Lee, Jiyoung
    Kim, Seonho
    Kwon, Hyeoksu
    Jo, Seungyun
    Ryu, Du Yeol
    Choi, U. Hyeok
    Kim, Byeong-Su
    MACROMOLECULES, 2023, 56 (18) : 7520 - 7531
  • [4] High-Modulus Single-Ion-Conducting Electrolytes Based on a Rigid-Rod Polyanion
    Bostwick, Joshua E. E.
    Yu, Deyang
    Zanelotti, Curt J. J.
    Dingemans, Theo J. J.
    Madsen, Louis A. A.
    Colby, Ralph H. H.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (13) : 6910 - 6916
  • [5] High Ion Conducting Nanohybrid Solid Polymer Electrolytes via Single-Ion Conducting Mesoporous Organosilica in Poly(ethylene oxide)
    Kim, Youngdo
    Kwon, Suk Jin
    Jang, Hye-Kyeong
    Jung, Byung Mun
    Lee, Sang Bok
    Choi, U. Hyeok
    CHEMISTRY OF MATERIALS, 2017, 29 (10) : 4401 - 4410
  • [6] Tetraarylborate polymer networks as single-ion conducting solid electrolytes
    Van Humbeck, Jeffrey F.
    Aubrey, Michael L.
    Alsbaiee, Alaaeddin
    Ameloot, Rob
    Coates, Geoffrey W.
    Dichtel, William R.
    Long, Jeffrey R.
    CHEMICAL SCIENCE, 2015, 6 (10) : 5499 - 5505
  • [7] Single-Ion-Conducting "Polymer-in-Ceramic" Hybrid Electrolyte with an Intertwined NASICON-Type Nanofiber Skeleton
    Yu, Shicheng
    Xu, Qi
    Lu, Xin
    Liu, Zigeng
    Windmueller, Anna
    Tsai, Chih-Long
    Buchheit, Annika
    Tempel, Hermann
    Kungl, Hans
    Wiemhofer, Hans-Dieter
    Eichel, Rudiger-A
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (51) : 61067 - 61077
  • [8] Nanostructured Single-Ion-Conducting Hybrid Electrolytes Based on Salty Nanoparticles and Block Copolymers
    Villaluenga, Irune
    Inceoglu, Sebnem
    Jiang, Xi
    Chen, Xi Chelsea
    Chintapalli, Mahati
    Wang, Dunyang Rita
    Devaux, Didier
    Balsara, Nitash P.
    MACROMOLECULES, 2017, 50 (05) : 1998 - 2005
  • [9] Computationally aided design of single-ion-conducting block copolymer electrolytes to boost lithium-ion conductivity
    Song, Zi-Chen
    Ma, Xiao-Juan
    Huang, Chong-Yang
    Xu, Fei-Xiang
    Fang, Shang-Quan
    Peng, Ze-Xin
    Zhang, Rui
    POLYMER INTERNATIONAL, 2024,
  • [10] Application of Single-Ion Conducting Gel Polymer Electrolytes in Magnesium Batteries
    Merrill, Laura C.
    Ford, Hunter O.
    Schaefer, Jennifer L.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6355 - 6363