Inverse analysis for estimating geotechnical parameters using physics-informed neural networks

被引:0
|
作者
Ito, Shinichi [1 ]
Fukunaga, Ryusei [2 ]
Sako, Kazunari [2 ]
机构
[1] Ritsumeikan Univ, Fac Sci & Engn, Dept Civil & Environm Engn, Tricea 1,1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
[2] Kagoshima Univ, Dept Engn, Ocean Civil Engn Program, 1-21-40 Korimoto, Kagoshima, Kagoshima 8900065, Japan
关键词
Physics-informed neural networks; Inverse analysis; Coefficient of consolidation; Unsaturated soil hydraulic properties; Soil water retention test; HYDRAULIC CONDUCTIVITY; FLOW;
D O I
10.1016/j.sandf.2024.101533
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Physics -informed neural networks (PINNs) have been proposed for incorporating physical laws into deep learning. PINNs can output solutions that satisfy physical laws by introducing information, such as partial differential equations (PDEs), boundary conditions, and initial conditions, into the loss functions used during the construction of the neural network model. This study presents two cases in which geotechnical parameters were estimated through an inverse analysis of PINNs. PINNs were applied to simulate consolidation and unsaturated seepage processes. The inverse analysis of the PINNs helped estimate the coefficient of consolidation and the parameters related to the unsaturated soil hydraulic properties with sufficient accuracy. The inverse analysis of PINNs for geotechnical parameter estimation was found to be an effective approach that utilizes measurement data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Physics-informed and graph neural networks for enhanced inverse analysis
    Di Lorenzo, Daniele
    Champaney, Victor
    Ghnatios, Chady
    Cueto, Elias
    Chinesta, Francisco
    ENGINEERING COMPUTATIONS, 2024,
  • [2] Estimating Soil Hydraulic Parameters for Unsaturated Flow Using Physics-Informed Neural Networks
    Vemuri, Sai Karthikeya
    Buechner, Tim
    Denzler, Joachim
    COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 338 - 351
  • [3] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [4] Discontinuity Computing Using Physics-Informed Neural Networks
    Liu, Li
    Liu, Shengping
    Xie, Hui
    Xiong, Fansheng
    Yu, Tengchao
    Xiao, Mengjuan
    Liu, Lufeng
    Yong, Heng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [5] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [6] Solving forward and inverse problems of contact mechanics using physics-informed neural networks
    Sahin, Tarik
    von Danwitz, Max
    Popp, Alexander
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [7] On the potential of physics-informed neural networks to solve inverse problems in tokamaks
    Rossi, Riccardo
    Gelfusa, Michela
    Murari, Andrea
    NUCLEAR FUSION, 2023, 63 (12)
  • [8] PHYSICS-INFORMED NEURAL NETWORKS WITH HARD CONSTRAINTS FOR INVERSE DESIGN\ast
    Lu, Lu
    Pestourie, Raphael
    Yao, Wenjie
    Wang, Zhicheng
    Verdugo, Francesc
    Johnson, Steven G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06) : B1105 - B1132
  • [9] Inverse Physics-Informed Neural Networks for transport models in porous materials
    Berardi, Marco
    Difonzo, Fabio, V
    Icardi, Matteo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435
  • [10] Discontinuity Computing Using Physics-Informed Neural Networks
    Li Liu
    Shengping Liu
    Hui Xie
    Fansheng Xiong
    Tengchao Yu
    Mengjuan Xiao
    Lufeng Liu
    Heng Yong
    Journal of Scientific Computing, 2024, 98