Approaching the standard quantum limit of a Rydberg-atom microwave electrometer

被引:6
作者
Tu, Hai-Tao [1 ,2 ]
Liao, Kai-Yu [1 ,2 ,3 ]
Wang, Hong-Lei [1 ,2 ]
Zhu, Yi-Fei [1 ,2 ]
Qiu, Si-Yuan [1 ,2 ]
Jiang, Hao [1 ,2 ]
Huang, Wei [1 ,2 ,4 ]
Bian, Wu [1 ,2 ,3 ,4 ]
Yan, Hui [1 ,2 ,4 ]
Zhu, Shi-Liang [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Sch Phys, Guangdong Basic Res Ctr Excellence Struct & Fundam, Minist Educ,Key Lab Atom & Subatom Struct & Quantu, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Guangdong, Peoples R China
[3] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Hong Kong, Peoples R China
[4] South China Normal Univ, GPETR Ctr Quantum Precis Measurement, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
VAPOR CELL; ENSEMBLE;
D O I
10.1126/sciadv.ads0683
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of a microwave electrometer with inherent uncertainty approaching its ultimate limit carries both fundamental and technological significance. However, because of the thermal motion of atoms, the state-of-art Rydberg electrometer falls considerably short of the standard quantum limit by about three orders of magnitude. Here, we use an optically thin medium with approximately 5.2 x 105 laser-cooled atoms to implement the microwave heterodyne detection. By mitigating various noises and strategically optimizing the electrometer parameters, our study reduces the equivalent noise temperature by a factor of 20 and achieves an electric field sensitivity of 10.0 nV cm-1 Hz-1/2, lastly reaching a factor of 2.6 above the standard quantum limit. Our work also provides valuable insights into the inherent capabilities and limitations of Rydberg electrometers, offering superior sensitivity in detecting weak microwave signals for numerous applications.
引用
收藏
页数:7
相关论文
共 60 条
[1]   Interferometric radar measurements of water level changes on the Amazon flood plain [J].
Alsdorf, DE ;
Melack, JM ;
Dunne, T ;
Mertes, LAK ;
Hess, LL ;
Smith, LC .
NATURE, 2000, 404 (6774) :174-177
[2]   A pyramidal magneto-optical trap as a source of slow atoms [J].
Arlt, JJ ;
Maragò, O ;
Webster, S ;
Hopkins, S ;
Foot, CJ .
OPTICS COMMUNICATIONS, 1998, 157 (1-6) :303-309
[3]  
Becerra FE, 2013, NAT PHOTONICS, V7, P147, DOI [10.1038/NPHOTON.2012.316, 10.1038/nphoton.2012.316]
[4]   Three-photon Rydberg-atom-based radio-frequency sensing scheme with narrow linewidth [J].
Bohaichuk, Stephanie M. ;
Ripka, Fabian ;
Venu, Vijin ;
Christaller, Florian ;
Liu, Chang ;
Schmidt, Matthias ;
Kuebler, Harald ;
Shaffer, James P. .
PHYSICAL REVIEW APPLIED, 2023, 20 (06)
[5]  
Boulier T, 2017, PHYS REV A, V96, DOI [10.1103/PhysRevA.96.053409, 10.1103/physreva.96.053409]
[6]   Quantum Shot Noise Limit in a Rydberg RF Receiver Compared to Thermal Noise Limit in a Conventional Receiver [J].
Bussey, Liam W. ;
Burton, Fraser A. ;
Bongs, Kai ;
Goldwin, Jonathan ;
Whitley, Tim .
IEEE SENSORS LETTERS, 2022, 6 (09)
[7]   Sensitivity Improvement and Determination of Rydberg Atom-Based Microwave Sensor [J].
Cai, Minghao ;
Xu, Zishan ;
You, Shuhang ;
Liu, Hongping .
PHOTONICS, 2022, 9 (04)
[8]   Planar-Integrated Magneto-Optical Trap [J].
Chen, Liang ;
Huang, Chang-Jiang ;
Xu, Xin-Biao ;
Zhang, Yi-Chen ;
Ma, Dong-Qi ;
Lu, Zheng-Tian ;
Wang, Zhu-Bo ;
Chen, Guang-Jie ;
Zhang, Ji-Zhe ;
Tang, Hong X. ;
Dong, Chun-Hua ;
Liu, Wen ;
Xiang, Guo-Yong ;
Guo, Guang-Can ;
Zou, Chang-Ling .
PHYSICAL REVIEW APPLIED, 2022, 17 (03)
[9]   Quantum-Limited Atomic Receiver in the Electrically Small Regime [J].
Cox, Kevin C. ;
Meyer, David H. ;
Fatemi, Fredrik K. ;
Kunz, Paul D. .
PHYSICAL REVIEW LETTERS, 2018, 121 (11)
[10]   Atomic quantum memory: Cavity versus single-pass schemes [J].
Dantan, A ;
Bramati, A ;
Pinard, M .
PHYSICAL REVIEW A, 2005, 71 (04)