FCSwinU: Fourier Convolutions and Swin Transformer UNet for Hyperspectral and Multispectral Image Fusion

被引:1
作者
Li, Rumei [1 ]
Zhang, Liyan [1 ,2 ]
Wang, Zun [1 ]
Li, Xiaojuan [1 ,2 ]
机构
[1] Capital Normal Univ, Coll Resource Environm & Tourism, 105 North Rd West 3rd Ring, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Key Lab 3 Dimens Informat Acquisit & Applicat, Minist Educ, 105 North Rd West 3rd Ring, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image (HSI); multispectral image (MSI); image fusion; deep learning; Swin Transformer;
D O I
10.3390/s24217023
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The fusion of low-resolution hyperspectral images (LR-HSI) with high-resolution multispectral images (HR-MSI) provides a cost-effective approach to obtaining high-resolution hyperspectral images (HR-HSI). Existing methods primarily based on convolutional neural networks (CNNs) struggle to capture global features and do not adequately address the significant scale and spectral resolution differences between LR-HSI and HR-MSI. To tackle these challenges, our novel FCSwinU network leverages the spectral fast Fourier convolution (SFFC) module for spectral feature extraction and utilizes the Swin Transformer's self-attention mechanism for multi-scale global feature fusion. FCSwinU employs a UNet-like encoder-decoder framework to effectively merge spatiospectral features. The encoder integrates the Swin Transformer feature abstraction module (SwinTFAM) to encode pixel correlations and perform multi-scale transformations, facilitating the adaptive fusion of hyperspectral and multispectral data. The decoder then employs the Swin Transformer feature reconstruction module (SwinTFRM) to reconstruct the fused features, restoring the original image dimensions and ensuring the precise recovery of spatial and spectral details. Experimental results from three benchmark datasets and a real-world dataset robustly validate the superior performance of our method in both visual representation and quantitative assessment compared to existing fusion methods.
引用
收藏
页数:20
相关论文
共 50 条
[21]   UMTF-Net: An Unsupervised Multiscale Transformer Fusion Network for Hyperspectral and Multispectral Image Fusion [J].
Liu, Shuaiqi ;
Zhang, Shichong ;
Liu, Siyuan ;
Li, Bing ;
Zhang, Yu-Dong .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :17221-17238
[22]   Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation [J].
He, Xin ;
Zhou, Yong ;
Zhao, Jiaqi ;
Zhang, Di ;
Yao, Rui ;
Xue, Yong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[23]   Spatio-spectral Cross-Attention Transformer for Hyperspectral image and Multispectral image fusion [J].
Qin, Xilei ;
Song, Huihui ;
Fan, Jiaqing ;
Zhang, Kaihua .
REMOTE SENSING LETTERS, 2023, 14 (12) :1303-1314
[24]   Compressive hyperspectral and multispectral image fusion [J].
Espitia, Oscar ;
Castillo, Sergio ;
Arguello, Henry .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
[25]   Hyperspectral and Multispectral Image Fusion Based on Band Simulation [J].
Li, Xuelong ;
Yuan, Yue ;
Wang, Qi .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) :479-483
[26]   An Implicit Transformer-based Fusion Method for Hyperspectral and Multispectral Remote Sensing Image [J].
Zhu, Chunyu ;
Zhang, Tinghao ;
Wu, Qiong ;
Li, Yachao ;
Zhong, Qin .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 131
[27]   An Asymptotic Multiscale Symmetric Fusion Network for Hyperspectral and Multispectral Image Fusion [J].
Liu, Shuaiqi ;
Shao, Tingting ;
Liu, Siyuan ;
Li, Bing ;
Zhang, Yu-Dong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
[28]   STAFusion: An Adversarial Learning Network for Infrared and Visible Image Fusion via Swin Transformer [J].
Zhai, Yi ;
Song, Baoping ;
Cheng, Jinyong ;
Dong, Aimei ;
Lv, Guohua .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025,
[29]   Deep Hyperspectral and Multispectral Image Fusion With Inter-Image Variability [J].
Wang, Xiuheng ;
Borsoi, Ricardo Augusto ;
Richard, Cedric ;
Chen, Jie .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[30]   A Hybrid Learnable Fusion of ConvNeXt and Swin Transformer for Optimized Image Classification [J].
Qezelbash-Chamak, Jaber ;
Hicklin, Karen .
IOT, 2025, 6 (02)