Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries

被引:0
作者
Vattappara, Kevin [1 ,2 ,3 ,4 ]
Finsterbusch, Martin [5 ]
Fattakhova-Rohlfing, Dina [2 ,3 ,4 ,5 ]
Urdampilleta, Idoia [1 ]
Kvasha, Andriy [1 ,2 ]
机构
[1] CIDETEC, Basque Res & Technol Alliance BRTA, P Miramon 196, Donostia San Sebastian 20014, Spain
[2] ALISTORE European Res Inst, FR CNRS 3104, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] Univ Duisburg Essen, Fac Engn, Lotharstr 1, D-47057 Duisburg, Germany
[4] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
[5] Forschungszentrum Julich, Inst Energy Mat & Devices IMD Mat Synth & Proc 2, Wilhelm Johnen Str, D-52428 Julich, Germany
来源
BATTERIES-BASEL | 2025年 / 11卷 / 02期
关键词
solid-state electrolyte; solid-state battery; ceramic-rich composite separator; high voltage; composite electrolyte; POLYMER ELECTROLYTE; LITHIUM BATTERIES; IONIC-CONDUCTIVITY; STABILITY; SUCCINONITRILE; PROGRESS; WINDOW;
D O I
10.3390/batteries11020042
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90-95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the "polymer/LiTFSI/plasticizer"-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators.
引用
收藏
页数:24
相关论文
共 63 条
[1]   Progress in solid-state high voltage lithium-ion battery electrolytes [J].
Ahniyaz, Anwar ;
de Meatza, Iratxe ;
Kvasha, Andriy ;
Garcia-Calvo, Oihane ;
Ahmed, Istaq ;
Sgroi, Mauro Francesco ;
Giuliano, Mattia ;
Dotoli, Matteo ;
Dumitrescu, Mihaela-Aneta ;
Jahn, Marcus ;
Zhang, Ningxin .
ADVANCES IN APPLIED ENERGY, 2021, 4
[2]   The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors [J].
Alarco, PJ ;
Abu-Lebdeh, Y ;
Abouimrane, A ;
Armand, M .
NATURE MATERIALS, 2004, 3 (07) :476-481
[3]   Investigation on the stability of the lithium-polymer electrolyte interface [J].
Appetecchi, GB ;
Scaccia, S ;
Passerini, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4448-4452
[4]   Hot-pressed, dry, composite, PEO-based electrolyte membranes I. Ionic conductivity characterization [J].
Appetecchi, GB ;
Croce, F ;
Hassoun, J ;
Scrosati, B ;
Salomon, M ;
Cassel, F .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :105-112
[5]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[6]   Are solid-state batteries safer than lithium-ion batteries? [J].
Bates, Alex M. ;
Preger, Yuliya ;
Torres-Castro, Loraine ;
Harrison, Katharine L. ;
Harris, Stephen J. ;
Hewson, John .
JOULE, 2022, 6 (04) :742-755
[7]   Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries [J].
Ben Youcef, Hicham ;
Garcia-Calvo, Oihane ;
Lago, Nerea ;
Devaraj, Shanmukaraj ;
Armand, Michel .
ELECTROCHIMICA ACTA, 2016, 220 :587-594
[8]   Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries [J].
Castillo, Julen ;
Robles-Fernandez, Adrian ;
Cid, Rosalia ;
Gonzalez-Marcos, Jose Antonio ;
Armand, Michel ;
Carriazo, Daniel ;
Zhang, Heng ;
Santiago, Alexander .
GELS, 2023, 9 (04)
[9]   An all-organic solid-state electrochrornic device containing poly (vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid [J].
Chang, Ting-Hsiang ;
Hu, Chih-Wei ;
Kao, Sheng-Yuan ;
Kung, Chung-Wei ;
Chen, Hsin-Wei ;
Ho, Kuo-Chuan .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 :606-612
[10]   Best practices for incremental capacity analysis [J].
Dubarry, Matthieu ;
Ansean, David .
FRONTIERS IN ENERGY RESEARCH, 2022, 10