Generative AI in EU law: Liability, privacy, intellectual property, and cybersecurity

被引:4
作者
Novelli, Claudio [1 ,3 ]
Casolari, Federico [1 ]
Hacker, Philipp [2 ]
Spedicato, Giorgio [1 ]
Floridi, Luciano [1 ,3 ]
机构
[1] Univ Bologna, Dept Legal Studies, Via Zamboni,27-29, I-40126 Bologna, IT, Italy
[2] European Univ Viadrina, European New Sch Digital Studies, Grosse Scharrnstr 59, D-15230 Frankfurt, Germany
[3] Yale Univ, Digital Ethics Ctr, 85 Trumbull St, New Haven, CT 06511 USA
关键词
Generative AI; EU law; Liability; Privacy; Intellectual property; Cybersecurity;
D O I
10.1016/j.clsr.2024.106066
中图分类号
D9 [法律]; DF [法律];
学科分类号
0301 ;
摘要
The complexity and emergent autonomy of Generative AI systems introduce challenges in predictability and legal compliance. This paper analyses some of the legal and regulatory implications of such challenges in the European Union context, focusing on four areas: liability, privacy, intellectual property, and cybersecurity. It examines the adequacy of the existing and proposed EU legislation, including the Artificial Intelligence Act (AIA), in addressing the challenges posed by Generative AI in general and LLMs in particular. The paper identifies potential gaps and shortcomings in the EU legislative framework and proposes recommendations to ensure the safe and compliant deployment of generative models.
引用
收藏
页数:16
相关论文
共 93 条
  • [1] Abbott R., 2018, UCLA Law Rev
  • [2] Adlakha V, 2024, Arxiv, DOI [arXiv:2307.16877, DOI 10.48550/ARXIV.2307.16877]
  • [3] Brown TB, 2020, Arxiv, DOI arXiv:2005.14165
  • [4] Bederman DJ, 2010, International legal personality
  • [5] Bi B, 2013, P 22 INT C WORLD WID, P131, DOI [10.1145/2488388.2488401, DOI 10.1145/2488388.2488401]
  • [6] Bommasani R., 2021, arXiv
  • [7] Big Data and Analytics in the Age of the GDPR
    Bonatti, Piero A.
    Kirrane, Sabrina
    [J]. 2019 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS 2019), 2019, : 7 - 16
  • [8] Borkar J., 2023, What can we learn from Data Leakage and Unlearning for Law?
  • [9] Brown Hannah, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P2280, DOI 10.1145/3531146.3534642
  • [10] Carlini N, 2023, PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, P5253