Evaluation of electron-phonon coupling strength and average phonon energy in MoS2 thin film

被引:0
作者
Rayimjonova, Umidakhon [1 ,2 ,3 ]
Kawai, Daisuki [1 ]
Hasunuma, Ryu [1 ]
Islam, Muhammad M. [1 ]
Sakurai, Takeaki [1 ]
机构
[1] Univ Tsukuba, Inst Appl Phys, Ibaraki, Japan
[2] Uzbekistan Japan Innovat Ctr Youth, Tashkent, Uzbekistan
[3] Uppsala Univ, Uppsala, Sweden
基金
日本科学技术振兴机构;
关键词
2D; TMDCs; MoS2; phonon energy; electron-phonon coupling; TEMPERATURE-DEPENDENCE; TRANSPORT-PROPERTIES; SINGLE-LAYER; MONOLAYER;
D O I
10.35848/1347-4065/ad9c86
中图分类号
O59 [应用物理学];
学科分类号
摘要
The advancement of nanodevice technology necessitates a shift from conventional 3D semiconductors to more efficient materials, especially as device sizes shrink and short channel effects become increasingly significant. Transition metal dichalcogenides (TMDCs), a class of 2D materials, have emerged as a promising alternative due to their atomically thin layers, excellent electrical conductivity, and tunable bandgaps. These properties make TMDCs particularly attractive for applications in electronics and photonics. In this study, we present a comparative analysis of molybdenum disulfide (MoS2) samples fabricated via two different methods: chemical vapor deposition and mechanical exfoliation. Our goal is to understand how the growth technique influenced the material's optical properties and band transitions. Using optical spectroscopy techniques, including photoluminescence and Raman spectroscopy, we observed distinct variations in electron-phonon coupling strength and average phonon energies between the two sample types. These findings highlight the impact of fabrication methods on the optical behavior of MoS2, offering critical insights for optimizing the material for future nanodevice applications.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Engineering Interlayer Electron-Phonon Coupling in WS2/BN Heterostructures [J].
Li, Yifei ;
Zhang, Xiaowei ;
Wang, Jinhuan ;
Ma, Xiaoli ;
Shi, Jin-An ;
Guo, Xiangdong ;
Zuo, Yonggang ;
Li, Ruijie ;
Hong, Hao ;
Li, Ning ;
Xu, Kai ;
Huang, Xinyu ;
Tian, Huifeng ;
Yang, Ying ;
Yao, Zhixin ;
Liao, PeiChi ;
Li, Xiao ;
Guo, Junjie ;
Huang, Yuang ;
Gao, Peng ;
Wang, Lifen ;
Yang, Xiaoxia ;
Dai, Qing ;
Wang, EnGe ;
Liu, Kaihui ;
Zhou, Wu ;
Yu, Xiaohui ;
Liang, Liangbo ;
Jiang, Ying ;
Li, Xin-Zheng ;
Liu, Lei .
NANO LETTERS, 2022, 22 (07) :2725-2733
[42]   A First-Principles Study of electron-phonon coupling of OsB2 [J].
Wang, Yueqin ;
Gao, Juan ;
Yan, Shaoping .
ADVANCE MATERIALS DEVELOPMENT AND APPLIED MECHANICS, 2014, 597 :113-116
[43]   Electron-Phonon Coupling and Superconductivity in RC2 (R=Y, La) [J].
Sharma, Ramesh ;
Sharma, Yamini .
MATERIALS TODAY-PROCEEDINGS, 2016, 3 (09) :3144-3150
[44]   Enhanced electron-phonon coupling in NbB2 by nanoscaling the grain size [J].
Bao, Lihong ;
Yang, Fan ;
Tegus, O. ;
Huang, Ying Kai ;
Leng, Hua Qian ;
de Visser, Anne .
MATERIALS CHARACTERIZATION, 2019, 150 :13-21
[45]   Engineering Acoustic Phonons and Electron-Phonon Coupling by the Nanoscale Interface [J].
Yu, Shangjie ;
Zhang, Jiatao ;
Tang, Yun ;
Ouyang, Min .
NANO LETTERS, 2015, 15 (09) :6282-6288
[46]   Lifetime of holes and electrons at metal surfaces;: electron-phonon coupling [J].
Hellsing, B ;
Eiguren, A ;
Reinert, F ;
Nicolay, G ;
Chulkov, EV ;
Silkin, VM ;
Hüfner, S ;
Echenique, PM .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2003, 129 (2-3) :97-104
[47]   Electron-Phonon Coupling and the Metallization of Solid Helium at Terapascal Pressures [J].
Monserrat, Bartomeu ;
Drummond, N. D. ;
Pickard, Chris J. ;
Needs, R. J. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[48]   Real structure influence on the electron-phonon coupling properties of niobium [J].
Schierning, G. ;
Fendrich, M. ;
Theissmann, R. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2015, 9 (07) :431-435
[49]   Electron-Phonon Coupling in Bolometers Used for Cryogenic Particle Detection [J].
R. Horn ;
J. P. Harrison .
Journal of Low Temperature Physics, 2003, 133 :291-311
[50]   Electron-phonon coupling in La3In under pressure [J].
Singh, Surinder ;
Pinsook, Udomsilp .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (24)