Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity

被引:0
|
作者
Li, Jiashan [1 ]
Gong, Xinqi [1 ]
机构
[1] Renmin Univ China, Inst Math Sci, Sch Math, 59 Zhongguancun St, Beijing 100872, Peoples R China
来源
BMC BIOINFORMATICS | 2025年 / 26卷 / 01期
关键词
Binding affinity; Binding site prediction; Molecular representation; Molecular pre-training; SCORING FUNCTIONS; DOCKING; GLIDE;
D O I
10.1186/s12859-025-06064-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundThe binding between proteins and ligands plays a crucial role in the field of drug discovery. However, this area currently faces numerous challenges. On one hand, existing methods are constrained by the limited availability of labeled data, often performing inadequately when addressing complex protein-ligand interactions. On the other hand, many models struggle to effectively capture the flexible variations and relative spatial relationships between proteins and ligands. These issues not only significantly hinder the advancement of protein-ligand binding research but also adversely affect the accuracy and efficiency of drug discovery. Therefore, in response to these challenges, our study aims to enhance predictive capabilities through innovative approaches, providing more reliable support for drug discovery efforts.MethodsThis study leverages a pre-trained model with spatial awareness to enhance the prediction of protein-ligand binding affinity. By perturbing the structures of small molecules in a manner consistent with physical constraints and employing self-supervised tasks, we improve the representation of small molecule structures, allowing for better adaptation to affinity predictions. Meanwhile, our approach enables the identification of potential binding sites on proteins.ResultsOur model demonstrates a significantly higher correlation coefficient in binding affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, and Merck FEP benchmarks confirms the model's robustness and strong generalization across diverse datasets. Additionally, the model achieves over 95% in classification ROC for binding site identification, underscoring its high accuracy in pinpointing protein-ligand interaction regions.ConclusionThis research presents a novel approach that not only enhances the accuracy of binding affinity predictions but also facilitates the identification of binding sites, showcasing the potential of pre-trained models in computational drug design. Data and code are available at https://github.com/MIALAB-RUC/SableBind.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] FABind: Fast and Accurate Protein-Ligand Binding
    Pei, Qizhi
    Gao, Kaiyuan
    Wu, Lijun
    Zhu, Jinhua
    Xia, Yingce
    Xie, Shufang
    Qin, Tao
    He, Kun
    Liu, Tie-Yan
    Yan, Rui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] A point cloud-based deep learning strategy for protein-ligand binding affinity prediction
    Wang, Yeji
    Wu, Shuo
    Duan, Yanwen
    Huang, Yong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [23] Interformer: an interaction-aware model for protein-ligand docking and affinity prediction
    Lai, Houtim
    Wang, Longyue
    Qian, Ruiyuan
    Huang, Junhong
    Zhou, Peng
    Ye, Geyan
    Wu, Fandi
    Wu, Fang
    Zeng, Xiangxiang
    Liu, Wei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [24] Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes
    Pason, Lukas P.
    Sotriffer, Christoph A.
    MOLECULAR INFORMATICS, 2016, 35 (11-12) : 541 - 548
  • [25] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906
  • [26] The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity
    Veit-Acosta, Martina
    de Azevedo Junior, Walter Filgueira
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (34) : 7006 - 7022
  • [27] DOX: A new computational protocol for accurate prediction of the protein-ligand binding structures
    Rao, Li
    Chi, Bo
    Ren, Yanliang
    Li, Yongjian
    Xu, Xin
    Wan, Jian
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (03) : 336 - 344
  • [28] Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction
    Qu, Xiaoyang
    Dong, Lina
    Luo, Ding
    Si, Yubing
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2263 - 2274
  • [29] graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein-Ligand Complexes
    Karlov, Dmitry S.
    Sosnin, Sergey
    Fedorov, Maxim V.
    Popov, Petr
    ACS OMEGA, 2020, 5 (10): : 5150 - 5159
  • [30] SE-OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity Prediction
    Wang, Shudong
    Liu, Dayan
    Ding, Mao
    Du, Zhenzhen
    Zhong, Yue
    Song, Tao
    Zhu, Jinfu
    Zhao, Renteng
    FRONTIERS IN GENETICS, 2021, 11