Recent Advances on CO2 Electrochemical Reduction over Cu-Based Nanocrystals

被引:2
作者
Xue, Fei [1 ]
Lai, Xiaofei [2 ]
Xu, Yong [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, I Lab, Suzhou 215123, Peoples R China
[2] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; electrochemical reduction; Cu nanocrystals; C2+ products; selectivity; PHOTOCATALYTIC REDUCTION; SELECTIVE FORMATION; SUBSURFACE OXYGEN; CARBON-DIOXIDE; SINGLE ATOMS; CATALYSTS; ELECTROREDUCTION; SURFACE; ELECTROCATALYSTS; ELECTRODES;
D O I
10.1002/cctc.202400590
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical CO2 reduction reaction (CO2RR) has recently attracted increasing attention of chemists for converting CO2 to value-added chemicals with the assistance of electrical energy. Over the past decades, substantial efforts have been devoted to CO2RR, however, this process still suffers the challenges of uphill energy barrier, high overpotential, and poor selectivity to target product due to the thermodynamic stability and kinetic inertness of CO2. Among those catalysts, Cu has been widely used for CO2RR to produce hydrocarbons with relatively high efficiency in spite of the poor selectivity to products. Therefore, it is highly desired to developed highly active and selective Cu-based catalysts for CO2RR. This mini-review will summarize the recent advances on CO2RR over Cu-based nanocrystals (NCs) with a special focus on the control of selectivity of product via surface modification. We hope this mini-review will motivate chemists to develop efficient catalysts for CO2RR, and also promote fundamental research on catalyst design in heterogeneous catalysis.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Cu-Based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction
    Hou, Man
    Shi, Yong Xia
    Li, Jun Jun
    Gao, Zengqiang
    Zhang, Zhicheng
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (18)
  • [42] Cu-Based Catalytic Materials for Electrochemical Carbon Dioxide Reduction: Recent Advances and Perspectives
    Ma, Liang
    Yang, Zhuxian
    Wang, Yuan
    Xia, Yongde
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (10):
  • [43] Recent progress in electrochemical reduction of CO2 by oxide-derived copper catalysts
    Wang, S.
    Kou, T.
    Baker, S. E.
    Duoss, E. B.
    Li, Y.
    MATERIALS TODAY NANO, 2020, 12
  • [44] Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products
    Zhang X.
    Huang Y.
    Shao X.
    Li J.
    Li F.
    Yue Q.
    Wang Z.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (07): : 3736 - 3746
  • [45] Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms
    Meng, Yuxiao
    Huang, Hongjie
    Zhang, You
    Cao, Yongyong
    Lu, Hanfeng
    Li, Xi
    FRONTIERS IN CHEMISTRY, 2023, 11
  • [46] Recent Progress in Electrochemical CO2 Reduction at Different Electrocatalyst Materials
    Barcelos, Marcela Miranda
    Vasconcellos, Maria de Lourdes Soprani
    Ribeiro, Josimar
    PROCESSES, 2024, 12 (02)
  • [47] Stability Issues in Electrochemical CO2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies
    Lai, Wenchuan
    Qiao, Yan
    Wang, Yanan
    Huang, Hongwen
    ADVANCED MATERIALS, 2023, 35 (51)
  • [48] Recent Advances in Atomic-Level Engineering of Nanostructured Catalysts for Electrochemical CO2 Reduction
    Liu, Huiling
    Zhu, Yating
    Ma, Jianmin
    Zhang, Zhicheng
    Hu, Wenping
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (17)
  • [49] Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction
    Fields, Meredith
    Hong, Xin
    Norskov, Jens K.
    Chan, Karen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28) : 16209 - 16215
  • [50] Selective electrochemical CO2 reduction on Cu-Pd heterostructure
    Xie, Jia-Fang
    Chen, Jie-Jie
    Huang, Yu-Xi
    Zhang, Xing
    Wang, Wei-Kang
    Huang, Gui-Xiang
    Yu, Han-Qing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270 (270)