Co-MOF-derived core-shell CoP@Co3O4 nanoparticle loaded N-doped graphene: an efficient catalyst for the oxygen evolution reaction

被引:6
作者
Meng, Xian-Chen [1 ]
Luan, Jian [1 ]
Liu, Yi [1 ]
Sheng, Yu-Shu [1 ]
Guo, Fu-Yu [1 ]
Zheng, Peng [2 ]
Duan, Wen-Long [1 ]
Li, Wen-Ze [1 ]
机构
[1] Shenyang Univ Chem Technol, Coll Sci, Shenyang 110142, Peoples R China
[2] Shenyang Univ Chem Technol, Key Lab Resources Chem & Mat, Minist Educ, Shenyang 110142, Peoples R China
关键词
HYDROGEN; DESIGN; ENERGY; FUEL; RU; IR;
D O I
10.1039/d4ta07696f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) and their derivatives have multiple advantages, such as controlled morphology and uniform distribution of elements, and can serve as a kind of excellent electrocatalyst. It is significant to balance the relationship between activity, conductivity and stability of catalysts for the oxygen evolution reaction (OER). The construction of an interface in composite materials is an important strategy for the preparation of catalysts for the OER. In this paper, a novel Co-MOF (Co-MOF-NH2) was synthesized by a hydrothermal method, and was mixed with melamine phosphate (P-MA) and calcined to obtain an AIP-PMA composite material. For the first time, a one-step pyrolysis method was used to embed CoP nanoparticles into the Co3O4 shell and load them on the N-doped graphene layer. As a result, the unique morphology offered more dispersed active sites and larger specific surface area, and exhibited the highest catalytic activity and electrical conductivity. Density functional theory (DFT) calculation also showed that the formation of the interface between CoP and Co3O4 made the center of the d band of Co in AIP-PMA locate far from the Fermi level, thus reducing the energy barrier for O2 release and resulting in excellent OER performance with a 1.55 V potential at a current density of 10 mA cm-2. Furthermore, the graphene coating effectively shielded the catalyst, allowing it to remain stable over time.
引用
收藏
页码:627 / 637
页数:11
相关论文
共 55 条
[1]   Atomic-Level Coupled Interfaces and Lattice Distortion on CuS/NiS2 Nanocrystals Boost Oxygen Catalysis for Flexible Zn-Air Batteries [J].
An, Li ;
Li, Yuxuan ;
Luo, Mingchuan ;
Yin, Jie ;
Zhao, Yong-Qing ;
Xu, Cailing ;
Cheng, Fangyi ;
Yang, Ying ;
Xi, Pinxian ;
Guo, Shaojun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (42)
[2]   Unveiling the Role of Surface Self-Reconstruction of Metal Chalcogenides on Electrocatalytic Oxygen Evolution Reaction [J].
Bao, Weiwei ;
Liu, Jiangying ;
Ai, Taotao ;
Han, Jie ;
Hou, Jungang ;
Li, Wenhu ;
Wei, Xueling ;
Zou, Xiangyu ;
Deng, Zhifeng ;
Zhang, Junjun .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)
[3]   Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability [J].
Cherevko, Serhiy ;
Geiger, Simon ;
Kasian, Olga ;
Kulyk, Nadiia ;
Grote, Jan-Philipp ;
Savan, Alan ;
Shrestha, Buddha Ratna ;
Merzlikin, Sergiy ;
Breitbach, Benjamin ;
Ludwig, Alfred ;
Mayrhofer, Karl J. J. .
CATALYSIS TODAY, 2016, 262 :170-180
[4]   Water electrolysis based on renewable energy for hydrogen production [J].
Chi, Jun ;
Yu, Hongmei .
CHINESE JOURNAL OF CATALYSIS, 2018, 39 (03) :390-394
[5]   Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks [J].
Chong, Lina ;
Wen, Jianguo ;
Kubal, Joseph ;
Sen, Fatih G. ;
Zou, Jianxin ;
Greeley, Jeffery ;
Chan, Maria ;
Barkholtz, Heather ;
Ding, Wenjiang ;
Liu, Di-Jia .
SCIENCE, 2018, 362 (6420) :1276-+
[6]  
Costa L., 1990, ACS SYM SER, V425
[7]   Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments [J].
Danilovic, Nemanja ;
Subbaraman, Ramachandran ;
Chang, Kee Chul ;
Chang, Seo Hyoung ;
Kang, Yijin ;
Snyder, Joshua ;
Paulikas, Arvydas Paul ;
Strmcnik, Dusan ;
Kim, Yong Tae ;
Myers, Deborah ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (51) :14016-14021
[8]   Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis [J].
Dou, Shuo ;
Tao, Li ;
Huo, Jia ;
Wang, Shuangyin ;
Dai, Liming .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1320-1326
[9]   Hydrogen and fuel cells: Towards a sustainable energy future [J].
Edwards, P. P. ;
Kuznetsov, V. L. ;
David, W. I. F. ;
Brandon, N. P. .
ENERGY POLICY, 2008, 36 (12) :4356-4362
[10]   Defect Engineering of Chalcogen-Tailored Oxygen Electrocatalysts for Rechargeable Quasi-Solid-State Zinc-Air Batteries [J].
Fu, Jing ;
Hassan, Fathy M. ;
Zhong, Cheng ;
Lu, Jun ;
Liu, Han ;
Yu, Aiping ;
Chen, Zhongwei .
ADVANCED MATERIALS, 2017, 29 (35)