A STUDY ON ELECTROLESS COPPER DEPOSITION FOR DESKTOP STEREOLITHOGRAPHY 3D PRINTING MATERIALS

被引:0
作者
Ahmad, A. [1 ,2 ]
Wahab, Saidin [3 ]
Kamarudin, K. [1 ,2 ]
Hehsan, H. [1 ,2 ]
机构
[1] Univ Tun Hussein Onn Malaysia, Fac Engn Technol, Dept Mech Engn Technol, Km 1,Jalan Panchor, Pagoh 84600, Johor, Malaysia
[2] Univ Tun Hussein Onn Malaysia, Fac Engn Technol, Innovat Mfg Technol Imt, Km 1,Jalan Panchor, Pagoh 84600, Johor, Malaysia
[3] Univ Tun Hussein Onn Malaysia, Adv Mfg & Mat Ctr Ammc, Parit Raja, Batu Pahat 86400, Johor, Malaysia
关键词
Stereolithography; Electroless copper deposition; Optimization; Adhesion quality; NICKEL; METALLIZATION; OPTIMIZATION; RESINS;
D O I
10.24425/amm.2024.151409
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Electroless deposition is a method of metallizing parts without needing for an electrical source that can be performed on electrically conductive and non-conductive materials. Adhesion quality is an essential aspect of the electroless deposition process that determines the metal deposition conditions. The properties of stereolithography (SLA) 3D printed parts can be improved through the metallization process for various applications. In this study, optimization through the orthogonal design method was used to obtain the optimal processing parameters of electroless copper deposition on desktop SLA material with respect to adhesion quality. Experimental work was carried out according to the L9 (34) orthogonal array, followed by an evaluation of the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). Based on the S/N ratio results, the optimal processing parameters for adhesion quality were potassium hydroxide concentration (400 g/L), etching time (30 min), formaldehyde concentration (3.75 mL/L) and deposition time (30 min). The results of the study are useful for industries such as rapid tooling, rapid prototyping, and semiconductors.
引用
收藏
页码:1419 / 1424
页数:6
相关论文
共 29 条
  • [1] Jnr M.H., Gunbay S., Hayes C., Moritz V.F., Fuenmayor E., Lyons J.G., Devine D.M., Procedia Manuf, 55, pp. 205-212, (2021)
  • [2] Tagowski M., Arch. Metall. Mater, 67, 2, pp. 391-396, (2022)
  • [3] Kuczko W.L., Hamrol A., Wichniarek R.L., Gorski F., Rogalewicz M.L., Bull. Polish Acad. Sci. Tech. Sci, 69, 3, pp. 1-9, (2021)
  • [4] Taormina G., Sciancalepore C., Bondioli F., Messori M., Polymers (Basel), 10, (2018)
  • [5] Leon Cabezas M.A., Martinez Garcia A., Varela Gandia F.J., Procedia Manuf, 13, pp. 732-737, (2017)
  • [6] Wu T., Jahan S.A., Zhang Y., Zhang J., Elmounayri H., Tovar A., Procedia Manuf, 10, pp. 923-934, (2017)
  • [7] Hussin R., Sharif S., Nabialek M., Rahim S.Z.A., Khushairi M.T.M, Suhaimi M.A., Abdullah M.M.A.B, Hanid M.H.M., Wyslocki J.J., Bloch K., Materials (Basel), 14, 665, pp. 1-15, (2021)
  • [8] Shilpa K., Paleshwar D.V., Kasuba S., Int. J. Res. Eng. Sci. Manag, 1, 10, pp. 289-293, (2018)
  • [9] Mummareddy B., Maravola M., MacDonald E., Walker J., Hetzel B., Conner B., Cortes P., Int. J. Appl. Ceram. Technol, 17, 2, pp. 413-423, (2020)
  • [10] Shacham-Diamand Y., Osaka T., Okinaka Y., Sugiyama A., Dubin V., Microelectron. Eng, 132, pp. 35-45, (2014)