North Atlantic Heat Transport Convergence Derived from a Regional Energy Budget Using Different Ocean Heat Content Estimates

被引:1
作者
Meyssignac, B. [1 ]
Fourest, S. [1 ]
Mayer, Michael [2 ,3 ]
Johnson, G. C. [4 ]
Calafat, F. M. [5 ]
Ablain, M. [6 ]
Boyer, T. [7 ]
Cheng, L. [8 ]
Desbruyeres, D. [9 ]
Forget, G. [10 ]
Giglio, D. [11 ]
Kuusela, M. [12 ]
Locarnini, R. [7 ]
Lyman, J. M. [4 ,13 ]
Llovel, W. [9 ]
Mishonov, A. [7 ,14 ]
Reagan, J. [7 ]
Rousseau, V. [6 ]
Benveniste, J. [15 ]
机构
[1] Univ Toulouse, LEGOS CNES CNRS IRD UT3, Toulouse, France
[2] European Ctr Medium Range Weather Forecasts, Res Dept, Bonn, Germany
[3] Univ Vienna, Dept Meteorol & Geophys, A-1090 Vienna, Austria
[4] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA
[5] Natl Oceanog Ctr, Liverpool L3 5DA, England
[6] Magellium, F-31250 Ramonville St Agne, France
[7] NOAA, Natl Ctr Environm Informat, Silver Spring, MD 20910 USA
[8] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
[9] Univ Brest, CNRS, Lab Oceanog Phys & Spatiale LOPS, Ifremer,IRD,IUEM, F-29280 Plouzane, France
[10] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[11] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[12] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[13] Univ Hawaii, CIMAR, Honolulu, HI 96822 USA
[14] Univ Maryland, Cooperat Inst Satellite & Earth Syst Studies, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[15] European Space Agcy ESA ESRIN, I-00044 Frascati, Italy
基金
奥地利科学基金会; 英国自然环境研究理事会;
关键词
North Atlantic heat transport; Regional energy budget; Energy transport; Climate variability; Energy budget/balance; Heat budgets/fluxes; Surface fluxes; In situ observations; Satellite observations; Ocean heat content; SEA; CIRCULATION; REANALYSIS; ATMOSPHERE; STATE; SITU;
D O I
10.1007/s10712-024-09865-5
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project. The indirectly estimated horizontal convergence of the ocean heat transport is integrated between the rapid climate change-meridional overturning circulation and heatflux array (RAPID) section at 26.5 degrees N (operating since 2004) and the overturning in the subpolar north atlantic program (OSNAP) section, situated at 53 degrees-60 degrees N (operating since 2014). This is to validate the ocean heat transport convergence estimate against an independent estimate derived from RAPID and OSNAP in-situ measurements. The mean ocean energy budget of the North Atlantic is closed to within +/- 0.25 PW between RAPID and OSNAP sections. The mean oceanic heat transport convergence between these sections is 0.58 +/- 0.25 PW, which agrees well with observed section transports. Interannual variability of the inferred oceanic heat transport convergence is also in reasonable agreement with the interannual variability observed at RAPID and OSNAP, with a correlation of 0.54 between annual time series. The correlation increases to 0.67 for biannual time series. Other estimates of the ocean energy budget based on ocean heat content tendency derived from various methods give similar results. Despite a large spread, the correlation is always significant meaning the results are robust against the method to estimate the ocean heat content tendency.
引用
收藏
页码:1855 / 1874
页数:20
相关论文
共 56 条
[1]  
[Anonymous], 2022, Magellium/LEGOS: Atlantic OHC from space: Heat content change over the Atlantic Ocean by space geodetic approach, DOI [10.24400/527896/A01-2022.012, DOI 10.24400/527896/A01-2022.012]
[2]   Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets [J].
Blazquez, A. ;
Meyssignac, B. ;
Lemoine, J. M. ;
Berthier, E. ;
Ribes, A. ;
Cazenave, A. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 215 (01) :415-430
[3]  
Bryden H., 2001, OCEAN CIRCULATION CL, V77, P455, DOI DOI 10.1016/S0074-6142(01)80134-0
[4]   Improved estimates of ocean heat content from 1960 to 2015 [J].
Cheng, Lijing ;
Trenberth, Kevin E. ;
Fasullo, John ;
Boyer, Tim ;
Abraham, John ;
Zhu, Jiang .
SCIENCE ADVANCES, 2017, 3 (03)
[5]   Benefits of CMIP5 Multimodel Ensemble in Reconstructing Historical Ocean Subsurface Temperature Variations [J].
Cheng, Lijing ;
Zhu, Jiang .
JOURNAL OF CLIMATE, 2016, 29 (15) :5393-5416
[6]  
Collins M., 2019, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, P589, DOI [DOI 10.1017/9781009157964.008, 10.1017/9781009157964.008, DOI 10.1017/978100957964.008]
[7]  
Copernicus Climate Change Service, 2022, ECMWR, DOI 10.24381/CDS.C2451F6B
[8]  
de Boisseson E, 2021, EGU GEN ASS C EGU GE
[9]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[10]   ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation [J].
Forget, G. ;
Campin, J. -M. ;
Heimbach, P. ;
Hill, C. N. ;
Ponte, R. M. ;
Wunsch, C. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (10) :3071-3104