The microstructure and mechanical properties of the laser-welded joints of as-hot rolled AlCoCrFeNi2.1 high entropy alloy

被引:1
|
作者
He, Lei [1 ]
Wei, Wei [1 ]
Zhang, He [2 ]
Lin, Dan [1 ]
Wu, Fufa [1 ]
Su, Hai [3 ]
Yang, Xinhua [4 ]
机构
[1] Liaoning Univ Technol, Sch Mat Sci & Engn, Jinzhou 121001, Peoples R China
[2] Harbin Welding Inst Ltd Co, Harbin 150028, Heilongjiang, Peoples R China
[3] Liaoning BUB Technol Co Ltd, Jinzhou 121012, Peoples R China
[4] Dalian Jiaotong Univ, Liaoning Key Lab Welding & Reliabil Rail Transport, Dalian 116028, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser welding; AlCoCrFeNi 2.1 welded joint; Microstructure; Mechanical properties; SOLIDIFICATION; WELDABILITY;
D O I
10.1016/j.matchar.2024.114423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AlCoCrFeNi2.1 hot-rolled eutectic high entropy alloys were welded by laser welding, yielding a free-defect laser-welded connection. With the use of optical microscopy, EDS, EBSD, and XRD, the microstructure of the base metal (BM), fusion zone (FZ), and heat-affected zone (HAZ) of the joint was examined. The produced joint underwent tensile and micro-hardness testing as well as a fracture morphology examination. A similar tensile strength in the FZ and BM is measured, while a decrease in the elongation. The typical layered lamellar structures, in particular an FCC + BCC dual-phase structure, were all visible in the HAZ, BM, and FZ zones. The alpha-fiber and gamma-fiber as well as other textures are determined by the ODF figure, indicating a potential orientation distribution of the as-hot rolled AlCoCrFeNi2.1 joint. A clear grain refinement characteristics in the fusion zone as a result of the uneven thermal cycling during the welding process. The results of the mechanical test demonstrate the base metal has the highest hardness value, i.e. 500-550 HV0.2, within the welded joint zone. The welded joint has a tensile strength similar to 1200 MPa, which is marginally higher than similar to 1150 MPa in the base metal, and an elongation that decreases by 20 % from base metal to welded joint, indicating a decrease in the plasticity of the welded joint. A combination of brittle and ductile fracture occurs in welded joints during tensile failure. This study may give possibilities for the engineering application of laser welding of AlCoCrFeNi2.1 eutectic high entropy alloy in the future.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of Al Content in Magnesium Alloy on Microstructure and Mechanical Properties of Laser-Welded Mg/Ti Dissimilar Joints
    Dong, Wen
    Huang, Rongrong
    Zhao, Hongyun
    Gong, Xiangtao
    Chen, Bo
    Tan, Caiwang
    MATERIALS, 2020, 13 (12) : 1 - 17
  • [42] Effect of lamellar microstructure on fatigue crack initiation and propagation in AlCoCrFeNi2.1 eutectic high-entropy alloy
    Chen, Wei
    Wang, Yuting
    Wang, Luling
    Zhou, Jianqiu
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [43] Microstructure, mechanical properties, and corrosion resistance of DSS laser-welded joints
    Zhang, Zhiqiang
    Qu, Sicheng
    Zhang, Yuhang
    Zhang, Hongwei
    Lu, Xiaochong
    Li, Boya
    Li, Hanxi
    Zhang, Tiangang
    Wu, Dongquan
    Chu, Peng
    Liu, Hongli
    WELDING IN THE WORLD, 2025,
  • [44] Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Coatings Fabricated by Extreme High-Speed and Conventional Laser Cladding
    Wang, Jia
    Li, Yang
    Lu, Bingwen
    Liu, Jin
    Tan, Na
    Zhou, Yujie
    Cai, Yujun
    Lu, Zichuan
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2024, 33 (04) : 992 - 1005
  • [45] Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Coatings Fabricated by Extreme High-Speed and Conventional Laser Cladding
    Jia Wang
    Yang Li
    Bingwen Lu
    Jin Liu
    Na Tan
    Yujie Zhou
    Yujun Cai
    Zichuan Lu
    Journal of Thermal Spray Technology, 2024, 33 : 992 - 1005
  • [46] Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing
    Wani, I. S.
    Bhattacharjee, T.
    Sheikh, S.
    Bhattacharjee, P. P.
    Guo, S.
    Tsuji, N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 675 : 99 - 109
  • [47] Effect of thermal cycling on the microstructure and mechanical properties of AlCoCrFeNi2.1 high-entropy alloy fabricated using powder plasma arc additive manufacturing
    Shen, Qingkai
    Xue, Jiaxiang
    Zheng, Zehong
    Yu, Xiaoyan
    Ou, Ning
    MATERIALS LETTERS, 2022, 325
  • [48] Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy
    Bhattacharjee, Tilak
    Zheng, Ruixiao
    Chong, Yan
    Sheikh, Saad
    Guo, Sheng
    Clark, Ian Thomas
    Okawa, Toshiro
    Wani, Irfan Samad
    Bhattacharjee, Pinaki Prasad
    Shibata, Akinobu
    Tsuji, Nobuhiro
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 : 207 - 212
  • [49] Enhanced hot corrosion resistance of AlCoCrFeNi2.1 high entropy alloy coatings by extreme high-speed laser cladding
    Zhang, Li
    Ji, Yan
    Wang, Yunxin
    Yang, Bin
    CORROSION SCIENCE, 2024, 240
  • [50] Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy
    Rahul, M. R.
    Samal, Sumanta
    Venugopal, S.
    Phanikumar, Gandham
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 : 1115 - 1127