Genuine multipartite entanglement in quantum optimization

被引:0
|
作者
Santra, Gopal Chandra [1 ,2 ,3 ]
Roy, Sudipto Singha [1 ,2 ,4 ]
Egger, Daniel J. [5 ]
Hauke, Philipp [1 ,2 ]
机构
[1] Pitaevskii BEC Center, Department of Physics, University of Trento, Via Sommarive 14, Trento,I-38123, Italy
[2] INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Trento,I-38123, Italy
[3] Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, Heidelberg,69120, Germany
[4] Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Dhanbad,IN-826004, India
[5] IBM Quantum, IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon,CH-8803, Switzerland
关键词
Approximation algorithms - Benchmarking - Optimization - Optimization algorithms - Quantum electronics - Quantum entanglement - Quantum optics;
D O I
10.1103/PhysRevA.111.022434
中图分类号
学科分类号
摘要
The ability to generate bipartite entanglement in quantum computing technologies is widely regarded as pivotal. However, the role of genuinely multipartite entanglement is much less understood than bipartite entanglement, particularly in the context of solving complicated optimization problems using quantum devices. It is thus crucial from both the algorithmic and hardware standpoints to understand whether multipartite entanglement contributes to achieving a good solution. Here we tackle this challenge by analyzing genuine multipartite entanglement - quantified by the generalized geometric measure - generated in Trotterized quantum annealing and the quantum approximate optimization algorithm. Using numerical benchmarks, we analyze its occurrence in the annealing schedule in detail. We observe a multipartite-entanglement barrier, and we explore how it correlates to the algorithm's success. We also prove how multipartite entanglement provides an upper bound to the overlap of the instantaneous state with an exact solution. Vice versa, the overlaps to the initial and final product states, which can be easily measured experimentally, offer upper bounds for the multipartite entanglement during the entire schedule. Our results help to shed light on how complex quantum correlations come to bear as a resource in quantum optimization. © 2025 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [31] A Genuine Multipartite Entanglement Measure Generated by the Parametrized Entanglement Measure
    Shi, Xian
    Chen, Lin
    ANNALEN DER PHYSIK, 2023, 535 (12)
  • [32] Converting multilevel nonclassicality into genuine multipartite entanglement
    Regula, Bartosz
    Piani, Marco
    Cianciaruso, Marco
    Bromley, Thomas R.
    Streltsov, Alexander
    Adesso, Gerardo
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [33] Detecting genuine multipartite entanglement in steering scenarios
    Jebaratnam, C.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [34] Measures of genuine multipartite entanglement for graph states
    Guo Qun-Qun
    Chen Xiao-Yu
    Wang Yun-Yun
    CHINESE PHYSICS B, 2014, 23 (05)
  • [35] Genuine multipartite entanglement from a thermodynamic perspective
    Sun, Wenlong
    Jin, Yuanfeng
    Lu, Gang
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [36] Heuristic for estimation of multiqubit genuine multipartite entanglement
    Mendonca, Paulo E. M. F.
    Marchiolli, Marcelo A.
    Milburn, Gerard J.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (03)
  • [37] Teleportation and dense coding with genuine multipartite entanglement
    Yeo, Y
    Chua, WK
    PHYSICAL REVIEW LETTERS, 2006, 96 (06)
  • [38] Remote state preparation with genuine multipartite entanglement
    Ma Yi-Cong
    Zhang Yong-Sheng
    Guo Guang-Can
    CHINESE PHYSICS LETTERS, 2007, 24 (03) : 606 - 608
  • [39] Activation of metrologically useful genuine multipartite entanglement
    Trenyi, Robert
    Lukacs, Arpad
    Horodecki, Pawel
    Horodecki, Ryszard
    Vertesi, Tamas
    Toth, Geza
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [40] General framework for genuine multipartite entanglement detection
    Xu, Xin-Yu
    Zhou, Qing
    Zhao, Shuai
    Hu, Shu-Ming
    Li, Li
    Liu, Nai-Le
    Chen, Kai
    PHYSICAL REVIEW A, 2023, 107 (05)