Genuine multipartite entanglement in quantum optimization

被引:0
|
作者
Santra, Gopal Chandra [1 ,2 ,3 ]
Roy, Sudipto Singha [1 ,2 ,4 ]
Egger, Daniel J. [5 ]
Hauke, Philipp [1 ,2 ]
机构
[1] Pitaevskii BEC Center, Department of Physics, University of Trento, Via Sommarive 14, Trento,I-38123, Italy
[2] INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Trento,I-38123, Italy
[3] Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, Heidelberg,69120, Germany
[4] Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Dhanbad,IN-826004, India
[5] IBM Quantum, IBM Research Europe-Zurich, Säumerstrasse 4, Rüschlikon,CH-8803, Switzerland
关键词
Approximation algorithms - Benchmarking - Optimization - Optimization algorithms - Quantum electronics - Quantum entanglement - Quantum optics;
D O I
10.1103/PhysRevA.111.022434
中图分类号
学科分类号
摘要
The ability to generate bipartite entanglement in quantum computing technologies is widely regarded as pivotal. However, the role of genuinely multipartite entanglement is much less understood than bipartite entanglement, particularly in the context of solving complicated optimization problems using quantum devices. It is thus crucial from both the algorithmic and hardware standpoints to understand whether multipartite entanglement contributes to achieving a good solution. Here we tackle this challenge by analyzing genuine multipartite entanglement - quantified by the generalized geometric measure - generated in Trotterized quantum annealing and the quantum approximate optimization algorithm. Using numerical benchmarks, we analyze its occurrence in the annealing schedule in detail. We observe a multipartite-entanglement barrier, and we explore how it correlates to the algorithm's success. We also prove how multipartite entanglement provides an upper bound to the overlap of the instantaneous state with an exact solution. Vice versa, the overlaps to the initial and final product states, which can be easily measured experimentally, offer upper bounds for the multipartite entanglement during the entire schedule. Our results help to shed light on how complex quantum correlations come to bear as a resource in quantum optimization. © 2025 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [1] Detection of genuine entanglement for multipartite quantum states
    Hui Zhao
    Yu-Qiu Liu
    Naihuan Jing
    Zhi-Xi Wang
    Quantum Information Processing, 21
  • [2] Criterion for Genuine Multipartite Entanglement Quantum Channels
    Jiang Nian-Quan
    Wang Yu-Jian
    CHINESE PHYSICS LETTERS, 2010, 27 (01)
  • [3] Detection of genuine entanglement for multipartite quantum states
    Zhao, Hui
    Liu, Yu-Qiu
    Jing, Naihuan
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)
  • [4] Genuine multipartite entanglement in quantum phase transitions
    de Oliveira, TR
    Rigolin, G
    de Oliveira, MC
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [5] Dynamics of genuine multipartite entanglement in a quantum spin system
    Zhou, Jiang
    Guo, Hong
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (22)
  • [6] Converting quantum coherence to genuine multipartite entanglement and nonlocality
    Xi, Ya
    Zhang, Tinggui
    Zheng, Zhu-Jun
    Li-Jost, Xianqing
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [7] Purification of genuine multipartite entanglement
    Huber, Marcus
    Plesch, Martin
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [8] Genuine multipartite entanglement measure
    Guo, Yu
    Jia, Yanping
    Li, Xinping
    Huang, Lizhong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (14)
  • [9] Genuine multipartite entanglement in time
    Milz, Simon
    Spee, Cornelia
    Xu, Zhen-Peng
    Pollock, Felix
    Modi, Kavan
    Guhne, Otfried
    SCIPOST PHYSICS, 2021, 10 (06):
  • [10] Genuine Multipartite Entanglement without Multipartite Correlations
    Schwemmer, Christian
    Knips, Lukas
    Minh Cong Tran
    de Rosier, Anna
    Laskowski, Wieslaw
    Paterek, Tomasz
    Weinfurter, Harald
    PHYSICAL REVIEW LETTERS, 2015, 114 (18)