Existence and stability of a weakly damped laminated beam with a nonlinear delay

被引:0
作者
Al-Mahdi, Adel M. [1 ,2 ]
Al-Gharabli, Mohammed M. [1 ,2 ]
Feng, Baowei [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran, Saudi Arabia
[3] Southwestern Univ Finance & Econ, Dept Math, Chengdu 611130, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2024年 / 104卷 / 12期
关键词
EXPONENTIAL STABILITY; EVOLUTION-EQUATIONS; TIMOSHENKO BEAMS; TIME DELAYS; BOUNDARY; STABILIZATION; DECAY;
D O I
10.1002/zamm.202300213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A weakly damped laminated beam system with nonlinear time delay is studied. The existence and uniqueness are proved by Faedo-Galerkin approach. We prove that the system is stable under some specific conditions on the weight of the delay and the equal wave speeds of propagation. The general energy decay rate is established by using multiplier method and some properties of convex functions. This decay result is obtained without imposing any restrictive growth assumption on the damping term at the origin. In addition, our result improves and develops some existing results in the literature.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term
    Gerbi, Stephane
    Said-Houari, Belkacem
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11900 - 11910
  • [32] Existence and asymptotic stability of a viscoelastic wave equation with a delay
    Kirane, Mokhtar
    Said-Houari, Belkacem
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (06): : 1065 - 1082
  • [33] Global existence and exponential stability for a nonlinear Timoshenko system with delay
    Baowei Feng
    Maurício L Pelicer
    Boundary Value Problems, 2015
  • [34] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [35] Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term
    Djilali, Laid
    Benaissa, Abbes
    Benaissa, Abdelkader
    APPLICABLE ANALYSIS, 2016, 95 (12) : 2637 - 2660
  • [36] Well-posedness and exponential decay for a laminated beam with distributed delay term
    Douib, Madani
    Zitouni, Salah
    Djebabla, Abdelhak
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (03): : 545 - 562
  • [37] Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with nonlinear damping and source terms
    Taniguchi, Takeshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 566 - 578
  • [38] Existence of solution and uniform decay for a contact problem in laminated beam
    Baldez, C. A. da Costa
    Davalos, J. A.
    Raposo, C. A.
    Rivera, J. E. M.
    APPLIED MATHEMATICAL MODELLING, 2023, 122 : 303 - 321
  • [39] Exponential stability of a geometric nonlinear beam with a nonlinear delay term in boundary feedbacks
    Cuiying Li
    Yi Cheng
    Donal O’Regan
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74