Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering

被引:0
作者
Braxton, T. [1 ]
Lim, K. [2 ]
Alcala-Orozco, C. [2 ]
Joukhdar, H. [3 ]
Rnjak-Kovacina, J. [3 ]
Iqbal, N. [4 ]
Woodfield, T. [2 ]
Wood, D. [5 ]
Brockett, C. [1 ]
Yang, X. B. [5 ]
机构
[1] Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, England
[2] Univ Otago Christchurch, Dept Orthopaed Surg, CReaTE Grp, Christchurch 8140, New Zealand
[3] UNSW Sydney, Grad Sch Biomed Engn, Sydney, NSW 2052, Australia
[4] Univ Leeds, Chem & Proc Engn, Leeds LS2 9JT, England
[5] Univ Leeds, St Jamess Univ Hosp, Dept Oral Biol, Biomat & Tissue Engn Grp,WTBB, Leeds LS9 7TF, England
来源
ACS BIOMATERIALS SCIENCE & ENGINEERING | 2024年 / 10卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
Osteochondral; Cartilageregeneration; TissueEngineering; Silk fibroin; 3D printing; Biphasic scaffold; IN-VIVO; OSTEOGENIC DIFFERENTIATION; STEM-CELL; POLY(BUTYLENE TEREPHTHALATE); CARTILAGE DEFORMATION; POLY(ETHYLENE GLYCOL); SUBSTRATE STIFFNESS; FIBROIN BIOMATERIAL; BONE; BEHAVIOR;
D O I
10.1021/acsbiomaterials.4c01865
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Osteochondral tissue damage is a serious concern, with even minor cartilage damage dramatically increasing an individual's risk of osteoarthritis. Therefore, there is a need for an early intervention for osteochondral tissue regeneration. 3D printing is an exciting method for developing novel scaffolds, especially for creating biological scaffolds for osteochondral tissue engineering. However, many 3D printing techniques rely on creating a lattice structure, which often demonstrates poor cell bridging between filaments due to its large pore size, reducing regenerative speed and capacity. To tackle this issue, a novel biphasic scaffold was developed by a combination of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene-terephthalate) (PEGT/PBT) lattice infilled with a porous silk scaffold (derived from Bombyx mori silk fibroin) to make up a bone phase, which continued to a seamless silk top layer, representing a cartilage phase. Compression testing showed scaffolds had Young's modulus, ultimate compressive strength, and fatigue resistance that would allow for their theoretical survival during implantation and joint articulation without stress-shielding mechanosensitive cells. Fluorescent microscopy showed biphasic scaffolds could support the attachment and spreading of human mesenchymal stem cells from bone marrow (hMSC-BM). These promising results highlight the potential utilization of this novel scaffold for osteochondral tissue regeneration as well as highlighting the potential of infilling silk materials within 3D printed scaffolds to further increase their versatility.
引用
收藏
页码:7606 / 7618
页数:13
相关论文
共 50 条
  • [21] Evaluation of 3D printed polycaprolactone/tetracalcium phosphate nanocomposite as potential scaffold for bone tissue engineering
    Borhan, Shokoufeh
    Hesaraki, Saeed
    Shahrezaee, Mostafa
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 36 : 1130 - 1145
  • [22] 3D printed β-sheet-reinforced natural polymer hydrogel bilayer tissue engineering scaffold
    Zhao, Xinrui
    Nie, Xiongfeng
    Zhang, Xiaoping
    Sun, Yage
    Yang, Rong
    Bian, Xinyu
    Zhang, Qian
    Wang, HongYing
    Xu, Ziyang
    Liu, WenGuang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (04) : 1170 - 1184
  • [23] Biomimetic biphasic curdlan-based scaffold for osteochondral tissue engineering applications - Characterization and preliminary evaluation of mesenchymal stem cell response in vitro
    Klimek, Katarzyna
    Benko, Aleksandra
    Vandrovcova, Marta
    Travnickova, Martina
    Douglas, Timothy E. L.
    Tarczynska, Marta
    Broz, Antonin
    Gaweda, Krzysztof
    Ginalska, Grazyna
    Bacakova, Lucie
    BIOMATERIALS ADVANCES, 2022, 135
  • [24] The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (L-lactic acid)/ polyethylene glycol scaffold for bone tissue engineering
    Salehi, Saiedeh
    Ghomi, Hamed
    Hassanzadeh-Tabrizi, S. A.
    Koupaei, Narjes
    Khodaei, Mohammad
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 221 : 1325 - 1334
  • [25] 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study
    Cao, Yanyan
    Cheng, Peng
    Sang, Shengbo
    Xiang, Chuan
    An, Yang
    Wei, Xiaochun
    Yan, Yayun
    Li, Pengcui
    MATERIALS & DESIGN, 2021, 210 (210)
  • [26] Biological evaluation of polydopamine and chitosan composite coatings on the 3D printed porous biphasic calcium phosphate scaffold
    Fan, Shiyuan
    Wan, Yi
    Zhao, Zihe
    Wang, Hongwei
    Ji, Zhenbing
    CERAMICS INTERNATIONAL, 2022, 48 (19) : 27942 - 27956
  • [27] PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities
    Ghaedamini, Sho'leh
    Karbasi, Saeed
    Hashemibeni, Batool
    Honarvar, Ali
    Rabiei, Abbasali
    RESEARCH IN PHARMACEUTICAL SCIENCES, 2023, 18 (05) : 566 - 579
  • [28] Mechanical and Biological Characterization of 3D Printed Lattices
    Egan, Paul
    Wang, Xiuyu
    Greutert, Helen
    Shea, Kristina
    Wuertz-Kozak, Karin
    Ferguson, Stephen
    3D PRINTING AND ADDITIVE MANUFACTURING, 2019, 6 (02) : 73 - 81
  • [29] Applications of nanotechnology in 3D printed tissue engineering scaffolds
    Laird, Noah Z.
    Acri, Timothy M.
    Chakka, Jaidev L.
    Quarterman, Juliana C.
    Malkawi, Walla, I
    Elangovan, Satheesh
    Salem, Aliasger K.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2021, 161 : 15 - 28
  • [30] On 3D printed scaffolds for orthopedic tissue engineering applications
    Nishant Ranjan
    Rupinder Singh
    I. P. S. Ahuja
    Ranvijay Kumar
    Jatenderpal Singh
    Anita K. Verma
    Ankita Leekha
    SN Applied Sciences, 2020, 2