Precursor Prediction and Early Warning of Power MOSFET Failure Using Machine Learning With Model Uncertainty Considered

被引:0
作者
Hou, Yuluo [1 ,2 ]
Lu, Chang [1 ,2 ]
Abbas, Waseem [1 ]
Seid Ibrahim, Mesfin [3 ]
Waseem, Muhammad [4 ]
Hung Lee, Hiu [1 ]
Loo, Ka-Hong [4 ]
机构
[1] Ctr Adv Reliabil & Safety, Pak Shek Kok, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Aviat Serv Res Ctr, Hung Hom, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Dept Elect Engn, Hung Hom, Hong Kong, Peoples R China
关键词
Semiconductor device modeling; Predictive models; MOSFET; Uncertainty; Data models; Long short term memory; Hidden Markov models; Power electronics; Mathematical models; Logic gates; Bayesian neural network (BNN); machine learning; model uncertainty; power metal-oxide-semiconductor field-effect transistor (MOSFET); precursor prediction; reliability; RELIABILITY;
D O I
10.1109/JESTPE.2024.3476980
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the core component of power electronic systems, health monitoring of metal-oxide-semiconductor field-effect transistor (MOSFET) is extremely crucial. In this article, a hybrid failure precursor prediction model based on machine learning techniques is proposed. It consists of an isolation forest method and a long short-term memory (LSTM) network. The proposed model extracts information from different aspects of the input data to make predictions and can be sensitive to abnormal data behavior. By detecting the abnormality in the curve and predicting its future behavior, the model can give early warning of the power MOSFET failure and help avoid unexpected accidents. Besides, the model uncertainty is discussed. Two main factors that affect the model uncertainty of the proposed model are evaluated. To reduce the model uncertainty, a Bayesian neural network (BNN) is used to quantify the uncertainty of the proposed model with different parameters. The performance of the proposed model is verified based on the power MOSFET data collected from the accelerated life tests (ALTs). The experimental results indicate satisfying performances of the proposed model, because it can not only give early warning of MOSFET failures but also provide more stable prediction results with less model uncertainty compared with other existing models.
引用
收藏
页码:5762 / 5776
页数:15
相关论文
共 50 条
  • [31] A machine learning model for the early prediction of ovarian cancer using real world data
    de la Oliva Roque, Victor Manuel
    Esteban-Medina, Alberto
    Alejos Collado, Laura
    Louceras Munecas, Carlos
    Munoyerro-Muniz, Dolores
    Villegas, Roman
    Dopazo Blazquez, Joaquin
    FEBS OPEN BIO, 2024, 14 : 14 - 14
  • [32] Solar Power Generation Prediction Using a Lightweight Machine Learning Model for Edge Computing
    Minh-Hoang Nguyen
    Van-Nhan Nguyen
    Trong-Minh Hoang
    Chalee Vorakulpipat
    Nam-Hoang Nguyen
    INTELLIGENCE OF THINGS: TECHNOLOGIES AND APPLICATIONS, ICIT 2024, VOL 2, 2025, 230 : 134 - 145
  • [33] Using Machine Learning and GPT Models To Enhance Electrochemical Pretreatment of Anaerobic Cofermentation: Prediction, Early Warning, and Biomarker Identification
    Jiang, Jinqi
    Lin, Qingshan
    Guan, Xiaohong
    Zhou, Shuai
    Zhong, Shifa
    Xiang, Xiang
    Wang, Zongping
    Chen, Guanghao
    Guo, Gang
    ACS ES&T ENGINEERING, 2025,
  • [34] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [35] Failure Prediction in Automatic Reclosers Using Machine Learning Approaches
    Righetto, Sophia Boing
    Hattori, Leandro Takeshi
    Nunes, Guilherme Goncalves
    Carvalho, Edgar Gerevini
    Izumida Martins, Marcos A.
    De Francisci, Silvia
    2021 IEEE URUCON, 2021, : 320 - 324
  • [36] Improving risk prediction in heart failure using machine learning
    Adler, Eric D.
    Voors, Adriaan A.
    Klein, Liviu
    Macheret, Fima
    Braun, Oscar O.
    Urey, Marcus A.
    Zhu, Wenhong
    Sama, Iziah
    Tadel, Matevz
    Campagnari, Claudio
    Greenberg, Barry
    Yagil, Avi
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 139 - 147
  • [37] Early Warning of mmWave Signal Blockage Using Diffraction Properties and Machine Learning
    Fallah Dizche, Amirhassan
    Duel-Hallen, Alexandra
    Hallen, Hans
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) : 2944 - 2948
  • [38] Dropout early warning systems for high school students using machine learning
    Chung, Jae Young
    Lee, Sunbok
    CHILDREN AND YOUTH SERVICES REVIEW, 2019, 96 : 346 - 353
  • [39] Anomaly Detection in Biological Early Warning Systems Using Unsupervised Machine Learning
    Grekov, Aleksandr N.
    Kabanov, Aleksey A.
    Vyshkvarkova, Elena V.
    Trusevich, Valeriy V.
    SENSORS, 2023, 23 (05)
  • [40] Early Surge Warning Using a Machine Learning System with Real-Time Surveillance Camera Images
    Chen, Yi-Wen
    Yu, Teng-To
    Peng, Wen-Fei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (02)