Effect of Additives With Phenyl and Acid Anhydride Functional Groups on the Wide Temperature Operation Performance of LiNi0.8Co0.1Mn0.1O2∥SiO/Graphite Pouch Cells

被引:0
|
作者
Wang, Chengyun [1 ]
Chen, Jin [2 ]
Feng, Yaowei [3 ]
Deng, Xiuqin [3 ]
Pang, Xiaoxian [3 ]
Zou, Hanbo [3 ]
Yang, Wei [3 ]
Chen, Shengzhou [3 ]
Xu, Xijun [4 ]
机构
[1] GAC Automot Res & Dev Ctr, Guangzhou, Peoples R China
[2] Henan Acad Sci, Inst Chem Co Ltd, Zhengzhou, Peoples R China
[3] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou, Peoples R China
[4] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou, Peoples R China
来源
BATTERY ENERGY | 2025年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
acid anhydride group; electrolyte additive; LiNi0.8Co0.1Mn0.1O2 parallel to SiO/Graphite; lithium ion batteries; phenyl group; LITHIUM-ION BATTERIES; FLUOROETHYLENE CARBONATE; OVERCHARGE PROTECTION; ELECTROLYTE ADDITIVES; POLYMER ELECTROLYTES; GLUTARIC ANHYDRIDE; SUCCINIC ANHYDRIDE; LITHIATION; STABILITY; CAPACITY;
D O I
10.1002/bte2.20240042
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High-nickel LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode paired with silicon-based graphite (SiO/Gr) is pivotal for enhancing the energy density of lithium-ion batteries (LIBs). However, the high reactivity of NCM811 with the electrolyte and the volumetric expansion issues associated with SiO/Gr pose significant challenges to their practical application. To settle these issues, we explore the impact of additives with phenyl and acid anhydride moieties on the performance of NCM811 parallel to SiO/Gr pouch cells across a wide temperature range of -20 degrees C similar to 60 degrees C. Acid anhydride additives are capable of diminishing the internal resistance in NCM811 parallel to SiO/Gr pouch cells, as well as curbing gas evolution and thickness increase during the operational phase. Notably, the batteries enriched with citraconic anhydride (CAn) and succinic anhydride (SAn) additives after 120 cycles at 45 degrees C demonstrated enhanced capacity retention from 83.2% to 88.1% and 85.5%, respectively. Intriguingly, the inclusion of phenyl-containing additives in the electrolyte was found to be advantageous for NCM811 parallel to SiO/Gr pouch cells' low-temperature performance. Furthermore, neither type of functional group significantly enhanced performance at room conditions. Consequently, the combination of additives is necessary to fulfill the stringent requirements of LIBs for extreme environment applications. This work guides designing composite electrolytes for high energy density wide temperature operation LIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating
    Liang, Hongmei
    Wang, Zhixing
    Guo, Huajun
    Wang, Jiexi
    Leng, Jin
    APPLIED SURFACE SCIENCE, 2017, 423 : 1045 - 1053
  • [42] Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance
    Xiao Z.
    Hu C.
    Song L.
    Lu Y.
    Liu J.
    Zeng P.
    Huagong Xuebao/CIESC Journal, 2017, 68 (04): : 1652 - 1659
  • [43] Enhancing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes through amorphous coatings
    Dou, Lintao
    Tang, Ao
    Lin, Weiguang
    Dong, Xin
    Lu, Lu
    Shang, Chaoqun
    Zhang, Zhanhui
    Huang, Zhiliang
    Aifantis, Katerina
    Hu, Pu
    Xiao, Dongdong
    ELECTROCHIMICA ACTA, 2022, 425
  • [44] Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 with SiO2 Surface Coating Via Homogeneous Precipitation
    Dou, Lintao
    Hu, Pu
    Shang, Chaoqun
    Wang, Heng
    Xiao, Dongdong
    Ahuja, Utkarsh
    Aifantis, Katerina
    Zhang, Zhanhui
    Huang, Zhiliang
    CHEMELECTROCHEM, 2021, 8 (22) : 4321 - 4327
  • [45] Enhanced Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 at Elevated Temperature by Simultaneous Structure and Interface Regulating
    Feng, Ze
    Huang, Xiaobing
    Rajagopalan, Ranjusha
    Tang, Yougen
    Peng, Zhiguang
    Wang, Haiyan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : A1439 - A1448
  • [46] Improved electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode via SiO2 coating
    Lee, Seung-Hwan
    Park, Gum-Jae
    Sim, Seoung-Ju
    Jin, Bong-Soo
    Kim, Hyun-Soo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 193 - 199
  • [47] Enhanced rate performance and high current cycle stability of LiNi0.8Co0.1Mn0.1O2 by sodium doping
    Yu, Juan
    Huang, Wenlong
    Meng, Bicheng
    Wang, Lejie
    Zhao, Junkai
    Li, Linbo
    Du, Xiaoqing
    Fang, Zhao
    MATERIALS EXPRESS, 2019, 9 (08) : 895 - 905
  • [48] In Situ Polymerization Anchoring Effect Enhancing the Structural Stability and Electrochemical Performance of the LiNi0.8Co0.1Mn0.1O2 Cathode Material
    Zhang, Yang
    Song, Ye
    Liu, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (15) : 19075 - 19084
  • [49] Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating
    Li, Yong-Chun
    Zhao, Wei-Min
    Xiang, Wei
    Wu, Zhen-Guo
    Yang, Zu-Guang
    Xu, Chun-Liu
    Xu, Ya-Di
    Wang, En-Hui
    Wu, Chun-Jin
    Guo, Xiao-Dong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 546 - 555
  • [50] Enhanced cycling stability of LiNi0.8Co0.1Mn0.1O2 by reducing surface oxygen defects
    Meng, Kui
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    ELECTROCHIMICA ACTA, 2017, 234 : 99 - 107