Engineering Strategies Enabled Protocatechuic Acid Production from Lignin by Pseudomonas putida KT2440

被引:1
|
作者
Chen, Zhen [1 ,2 ,3 ,4 ]
Liu, He [1 ,2 ,3 ]
Zong, Qiu-Jin [1 ,2 ,3 ]
Liang, Tianxin [5 ]
Sun, Jun [5 ]
Xu, Tao [1 ,2 ,3 ]
Liu, Zhi-Hua [1 ,2 ,3 ]
Wu, Jianping [5 ]
Li, Bing-Zhi [1 ,2 ,3 ]
Yuan, Ying-Jin [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Frontiers Res Inst Synthet Biol, Tianjin 300072, Peoples R China
[4] Xinyang Normal Univ, Coll Life Sci, Henan Key Lab Tea Plant Biol, Xinyang 464000, Peoples R China
[5] Zhejiang Univ, Inst Bioengn, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
lignin valorization; biological funnel; syntheticbiology; protocatechuic acid; rate-limiting enzymes; fed-batch strategy; AROMATIC-COMPOUNDS; OPPORTUNITIES; CHALLENGES; PATHWAY;
D O I
10.1021/acssuschemeng.4c06474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioconversion of lignin into fine aromatics offers new avenues for both lignin valorization and biomass utilization. However, the heterogeneity of lignin and the lack of an effective conversion route pose challenges in lignin valorization. Herein, advanced engineering strategies of Pseudomonas putida have been designed for the high-yield production of valuable protocatechuic acid (PCA) from both lignin-derived aromatics and real lignin hydrolysates. Blocking the PCA degradation pathway facilitated PCA production from both lignin-derived H- and G-type aromatics. The aromatic hydroxylation and O-demethylation steps were identified as the metabolic bottlenecks for producing PCA from H- and G-type aromatics, respectively. Modulating the expression of genes encoding the rate-limiting enzymes PobA and VanAB successfully eliminated the accumulation of intermediates, 4-hydroxybenzoic acid and vanillic acid, respectively. By integrating these beneficial gene modifications, the chromosomal strain PCA1601 showed a remarkable production performance of PCA, reaching a titer of 22.7 mM PCA and a molar yield of 94.5%. Implementing the fed-batch strategy further increased PCA production from mixed lignin-derived aromatics, yielding a record titer of 113.6 mM (17.5 g/L). Most importantly, strain PCA1601 showcased remarkable conversion capacity with real lignin hydrolysate, ultimately producing 15.3 mM (2.4 g/L) PCA. The engineered plasmid-free P. putida represents a promising platform for the industrial bioproduction of fine aromatics from renewable lignin.
引用
收藏
页码:17726 / 17738
页数:13
相关论文
共 50 条
  • [31] Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production
    Askitosari, Theresia D.
    Berger, Carola
    Tiso, Till
    Harnisch, Falk
    Blank, Lars M.
    Rosenbaum, Miriam A.
    MICROORGANISMS, 2020, 8 (12) : 1 - 15
  • [32] Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440
    Fernandez, Matilde
    Conde, Susana
    de la Torre, Jesus
    Molina-Santiago, Carlos
    Ramos, Juan-Luis
    Duque, Estrella
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (02) : 1001 - 1009
  • [33] Genetic Code Expansion in Pseudomonas putida KT2440
    He, Xinyuan
    Gao, Tianyu
    Chen, Yan
    Liu, Kun
    Guo, Jiantao
    Niu, Wei
    ACS SYNTHETIC BIOLOGY, 2022, 11 (11): : 3724 - 3732
  • [34] Muconic Acid Production Using Engineered Pseudomonas putida KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin
    Almqvist, Henrik
    Veras, Henrique
    Li, Kena
    Hidalgo, Javier Garcia
    Hulteberg, Christian
    Gorwa-Grauslund, Marie
    Parachin, Nadia Skorupa
    Carlquist, Magnus
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (24): : 8097 - 8106
  • [35] Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering
    Liu, Honglu
    Chen, Yaping
    Zhang, Yiting
    Zhao, Wanwan
    Guo, Hongfu
    Wang, Siqi
    Xia, Wenjie
    Wang, Shufang
    Liu, Ruihua
    Yang, Chao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 209 : 117 - 124
  • [36] Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440
    Niu, Wei
    Willett, Howard
    Mueller, Joshua
    He, Xinyuan
    Kramer, Levi
    Ma, Bin
    Guo, Jiantao
    METABOLIC ENGINEERING, 2020, 59 (151-161) : 151 - 161
  • [37] From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440
    Dias, Felipe M. S.
    Pantoja, Raoni K.
    Gomez, Jose Gregorio C.
    Silva, Luiziana F.
    INTERNATIONAL MICROBIOLOGY, 2023, 26 (02) : 243 - 255
  • [38] From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440
    Felipe M. S. Dias
    Raoní K. Pantoja
    José Gregório C. Gomez
    Luiziana F. Silva
    International Microbiology, 2023, 26 : 243 - 255
  • [39] Metabolic engineering strategies of Pseudomonas putida KT2440 for biocatalysis under conditions with restricted oxygen supply
    Nikel, Pablo I.
    de Lorenzo, Victor
    NEW BIOTECHNOLOGY, 2012, 29 : S30 - S30
  • [40] Biosynthesis of Polyhydroxyalkanoates From Sucrose by Recombinant Pseudomonas putida KT2440
    Song, Hye Min
    Lim, Seo Hyun
    Lee, Eun Seo
    Kim, Dojin
    Lee, Sang Yup
    Jeong, Ki Jun
    Park, Si Jae
    CHEMBIOCHEM, 2025,