Engineering Strategies Enabled Protocatechuic Acid Production from Lignin by Pseudomonas putida KT2440

被引:1
|
作者
Chen, Zhen [1 ,2 ,3 ,4 ]
Liu, He [1 ,2 ,3 ]
Zong, Qiu-Jin [1 ,2 ,3 ]
Liang, Tianxin [5 ]
Sun, Jun [5 ]
Xu, Tao [1 ,2 ,3 ]
Liu, Zhi-Hua [1 ,2 ,3 ]
Wu, Jianping [5 ]
Li, Bing-Zhi [1 ,2 ,3 ]
Yuan, Ying-Jin [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Frontiers Res Inst Synthet Biol, Tianjin 300072, Peoples R China
[4] Xinyang Normal Univ, Coll Life Sci, Henan Key Lab Tea Plant Biol, Xinyang 464000, Peoples R China
[5] Zhejiang Univ, Inst Bioengn, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
lignin valorization; biological funnel; syntheticbiology; protocatechuic acid; rate-limiting enzymes; fed-batch strategy; AROMATIC-COMPOUNDS; OPPORTUNITIES; CHALLENGES; PATHWAY;
D O I
10.1021/acssuschemeng.4c06474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioconversion of lignin into fine aromatics offers new avenues for both lignin valorization and biomass utilization. However, the heterogeneity of lignin and the lack of an effective conversion route pose challenges in lignin valorization. Herein, advanced engineering strategies of Pseudomonas putida have been designed for the high-yield production of valuable protocatechuic acid (PCA) from both lignin-derived aromatics and real lignin hydrolysates. Blocking the PCA degradation pathway facilitated PCA production from both lignin-derived H- and G-type aromatics. The aromatic hydroxylation and O-demethylation steps were identified as the metabolic bottlenecks for producing PCA from H- and G-type aromatics, respectively. Modulating the expression of genes encoding the rate-limiting enzymes PobA and VanAB successfully eliminated the accumulation of intermediates, 4-hydroxybenzoic acid and vanillic acid, respectively. By integrating these beneficial gene modifications, the chromosomal strain PCA1601 showed a remarkable production performance of PCA, reaching a titer of 22.7 mM PCA and a molar yield of 94.5%. Implementing the fed-batch strategy further increased PCA production from mixed lignin-derived aromatics, yielding a record titer of 113.6 mM (17.5 g/L). Most importantly, strain PCA1601 showcased remarkable conversion capacity with real lignin hydrolysate, ultimately producing 15.3 mM (2.4 g/L) PCA. The engineered plasmid-free P. putida represents a promising platform for the industrial bioproduction of fine aromatics from renewable lignin.
引用
收藏
页码:17726 / 17738
页数:13
相关论文
共 50 条
  • [21] Funneling lignin hydrolysates into fl-ketoadipic acid by engineered Pseudomonas putida KT2440
    Liu, He
    Chen, Zhen
    Cui, Jia-Qi
    Ntakirutimana, Samuel
    Xu, Tao
    Liu, Zhi-Hua
    Li, Bing-Zhi
    Yuan, Ying-Jin
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 218
  • [22] Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid
    Graf, Nadja
    Altenbuchner, Josef
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (01) : 137 - 149
  • [23] Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos
    Gong, Ting
    Liu, Ruihua
    Che, You
    Xu, Xiaoqing
    Zhao, Fengjie
    Yu, Huilei
    Song, Cunjiang
    Liu, Yanping
    Yang, Chao
    MICROBIAL BIOTECHNOLOGY, 2016, 9 (06): : 792 - 800
  • [24] Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization
    Franden, Mary Ann
    Jayakody, Lahiru N.
    Li, Wing-Jin
    Wagner, Neil J.
    Cleveland, Nicholas S.
    Michener, William E.
    Hauer, Bernhard
    Blank, Lars M.
    Wierckx, Nick
    Klebensberger, Janosch
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2018, 48 : 197 - 207
  • [25] Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440
    Manzanera, M
    de Castro, AG
    Tondervik, A
    Rayner-Brandes, M
    Strom, AR
    Tunnacliffe, A
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (09) : 4328 - 4333
  • [26] Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440
    Xu, Zhangyang
    Pan, Chunmei
    Li, Xiaolu
    Hao, Naijia
    Zhang, Tong
    Gaffrey, Matthew J.
    Pu, Yunqiao
    Cort, John R.
    Ragauskas, Arthur J.
    Qian, Wei-Jun
    Yang, Bin
    BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
  • [27] A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440
    Zhang, Yiting
    Liu, Honglu
    Liu, Yujie
    Huo, Kaiyue
    Wang, Shufang
    Liu, Ruihua
    Yang, Chao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 191 : 608 - 617
  • [28] Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440
    Zhangyang Xu
    Chunmei Pan
    Xiaolu Li
    Naijia Hao
    Tong Zhang
    Matthew J. Gaffrey
    Yunqiao Pu
    John R. Cort
    Arthur J. Ragauskas
    Wei-Jun Qian
    Bin Yang
    Biotechnology for Biofuels, 14
  • [29] Engineering Pseudomonas putida KT2440 for Dipicolinate Production via the Entner-Doudoroff Pathway
    Wang, Yihan
    Zheng, Jie
    Xue, Yubin
    Yu, Bo
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (12) : 6500 - 6508
  • [30] Copper and cadmium: responses in Pseudomonas putida KT2440
    Miller, C. D.
    Pettee, B.
    Zhang, C.
    Pabst, M.
    McLean, J. E.
    Anderson, A. J.
    LETTERS IN APPLIED MICROBIOLOGY, 2009, 49 (06) : 775 - 783