Engineering Strategies Enabled Protocatechuic Acid Production from Lignin by Pseudomonas putida KT2440

被引:1
|
作者
Chen, Zhen [1 ,2 ,3 ,4 ]
Liu, He [1 ,2 ,3 ]
Zong, Qiu-Jin [1 ,2 ,3 ]
Liang, Tianxin [5 ]
Sun, Jun [5 ]
Xu, Tao [1 ,2 ,3 ]
Liu, Zhi-Hua [1 ,2 ,3 ]
Wu, Jianping [5 ]
Li, Bing-Zhi [1 ,2 ,3 ]
Yuan, Ying-Jin [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Frontiers Res Inst Synthet Biol, Tianjin 300072, Peoples R China
[4] Xinyang Normal Univ, Coll Life Sci, Henan Key Lab Tea Plant Biol, Xinyang 464000, Peoples R China
[5] Zhejiang Univ, Inst Bioengn, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
lignin valorization; biological funnel; syntheticbiology; protocatechuic acid; rate-limiting enzymes; fed-batch strategy; AROMATIC-COMPOUNDS; OPPORTUNITIES; CHALLENGES; PATHWAY;
D O I
10.1021/acssuschemeng.4c06474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioconversion of lignin into fine aromatics offers new avenues for both lignin valorization and biomass utilization. However, the heterogeneity of lignin and the lack of an effective conversion route pose challenges in lignin valorization. Herein, advanced engineering strategies of Pseudomonas putida have been designed for the high-yield production of valuable protocatechuic acid (PCA) from both lignin-derived aromatics and real lignin hydrolysates. Blocking the PCA degradation pathway facilitated PCA production from both lignin-derived H- and G-type aromatics. The aromatic hydroxylation and O-demethylation steps were identified as the metabolic bottlenecks for producing PCA from H- and G-type aromatics, respectively. Modulating the expression of genes encoding the rate-limiting enzymes PobA and VanAB successfully eliminated the accumulation of intermediates, 4-hydroxybenzoic acid and vanillic acid, respectively. By integrating these beneficial gene modifications, the chromosomal strain PCA1601 showed a remarkable production performance of PCA, reaching a titer of 22.7 mM PCA and a molar yield of 94.5%. Implementing the fed-batch strategy further increased PCA production from mixed lignin-derived aromatics, yielding a record titer of 113.6 mM (17.5 g/L). Most importantly, strain PCA1601 showcased remarkable conversion capacity with real lignin hydrolysate, ultimately producing 15.3 mM (2.4 g/L) PCA. The engineered plasmid-free P. putida represents a promising platform for the industrial bioproduction of fine aromatics from renewable lignin.
引用
收藏
页码:17726 / 17738
页数:13
相关论文
共 50 条
  • [11] Microbial production of levulinic acid from glucose by engineered Pseudomonas putida KT2440
    Kim, Hyun Jin
    Kim, Byung Chan
    Park, Hanna
    Cho, Geunsang
    Lee, Taekyu
    Kim, Hee Taek
    Bhatia, Shashi Kant
    Yang, Yung-Hun
    JOURNAL OF BIOTECHNOLOGY, 2024, 395 : 161 - 169
  • [12] Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440
    Williamson, James J.
    Bahrin, Nurfariza
    Hardiman, Elizabeth M.
    Bugg, Timothy D. H.
    BIOTECHNOLOGY JOURNAL, 2020, 15 (07)
  • [13] Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose
    Kuepper, Jannis
    Dickler, Jasmin
    Biggel, Michael
    Behnken, Swantje
    Jaeger, Gernot
    Wierckx, Nick
    Blank, Lars M.
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [14] Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440
    McNaught, Kevin J.
    Kuatsjah, Eugene
    Zahn, Michael
    Prates, Erica T.
    Shao, Huiling
    Bentley, Gayle J.
    Pickford, Andrew R.
    Gruber, Josephine N.
    V. Hestmark, Kelley
    Jacobson, Daniel A.
    Poirier, Brenton C.
    Ling, Chen
    San Marchi, Myrsini
    Michener, William E.
    Nicora, Carrie D.
    Sanders, Jacob N.
    Szostkiewicz, Caralyn J.
    Velickovic, Dusan
    Zhou, Mowei
    Munoz, Nathalie
    Kim, Young-Mo
    Magnuson, Jon K.
    Burnum-Johnson, Kristin E.
    Houk, K. N.
    McGeehan, John E.
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2023, 76 : 193 - 203
  • [15] Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production
    Luis E. Valencia
    Matthew R. Incha
    Matthias Schmidt
    Allison N. Pearson
    Mitchell G. Thompson
    Jacob B. Roberts
    Marina Mehling
    Kevin Yin
    Ning Sun
    Asun Oka
    Patrick M. Shih
    Lars M. Blank
    John Gladden
    Jay D. Keasling
    Communications Biology, 5 (1)
  • [16] Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost
    Ravi, Krithika
    Garcia-Hidalgo, Javier
    Gorwa-Grauslund, Marie F.
    Liden, Gunnar
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (12) : 5059 - 5070
  • [17] Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost
    Krithika Ravi
    Javier García-Hidalgo
    Marie F Gorwa-Grauslund
    Gunnar Lidén
    Applied Microbiology and Biotechnology, 2017, 101 : 5059 - 5070
  • [18] Engineering Pseudomonas putida KT2440 for chain length tailored free fatty acid and oleochemical production
    Valencia, Luis E.
    Incha, Matthew R.
    Schmidt, Matthias
    Pearson, Allison N.
    Thompson, Mitchell G.
    Roberts, Jacob B.
    Mehling, Marina
    Yin, Kevin
    Sun, Ning
    Oka, Asun
    Shih, Patrick M.
    Blank, Lars M.
    Gladden, John
    Keasling, Jay D.
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [19] Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid
    Nadja Graf
    Josef Altenbuchner
    Applied Microbiology and Biotechnology, 2014, 98 : 137 - 149
  • [20] Metabolic Engineering of Pseudomonas putida KT2440 for De Novo Biosynthesis of Vanillic Acid
    Li, Jin
    Fu, Jianli
    Shang, Yanzhe
    Wei, Wenping
    Zhang, Ping
    Wang, Xue
    Ye, Bang-Ce
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (08) : 4217 - 4224