Engineering Strategies Enabled Protocatechuic Acid Production from Lignin by Pseudomonas putida KT2440

被引:1
|
作者
Chen, Zhen [1 ,2 ,3 ,4 ]
Liu, He [1 ,2 ,3 ]
Zong, Qiu-Jin [1 ,2 ,3 ]
Liang, Tianxin [5 ]
Sun, Jun [5 ]
Xu, Tao [1 ,2 ,3 ]
Liu, Zhi-Hua [1 ,2 ,3 ]
Wu, Jianping [5 ]
Li, Bing-Zhi [1 ,2 ,3 ]
Yuan, Ying-Jin [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Frontiers Res Inst Synthet Biol, Tianjin 300072, Peoples R China
[4] Xinyang Normal Univ, Coll Life Sci, Henan Key Lab Tea Plant Biol, Xinyang 464000, Peoples R China
[5] Zhejiang Univ, Inst Bioengn, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
lignin valorization; biological funnel; syntheticbiology; protocatechuic acid; rate-limiting enzymes; fed-batch strategy; AROMATIC-COMPOUNDS; OPPORTUNITIES; CHALLENGES; PATHWAY;
D O I
10.1021/acssuschemeng.4c06474
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioconversion of lignin into fine aromatics offers new avenues for both lignin valorization and biomass utilization. However, the heterogeneity of lignin and the lack of an effective conversion route pose challenges in lignin valorization. Herein, advanced engineering strategies of Pseudomonas putida have been designed for the high-yield production of valuable protocatechuic acid (PCA) from both lignin-derived aromatics and real lignin hydrolysates. Blocking the PCA degradation pathway facilitated PCA production from both lignin-derived H- and G-type aromatics. The aromatic hydroxylation and O-demethylation steps were identified as the metabolic bottlenecks for producing PCA from H- and G-type aromatics, respectively. Modulating the expression of genes encoding the rate-limiting enzymes PobA and VanAB successfully eliminated the accumulation of intermediates, 4-hydroxybenzoic acid and vanillic acid, respectively. By integrating these beneficial gene modifications, the chromosomal strain PCA1601 showed a remarkable production performance of PCA, reaching a titer of 22.7 mM PCA and a molar yield of 94.5%. Implementing the fed-batch strategy further increased PCA production from mixed lignin-derived aromatics, yielding a record titer of 113.6 mM (17.5 g/L). Most importantly, strain PCA1601 showcased remarkable conversion capacity with real lignin hydrolysate, ultimately producing 15.3 mM (2.4 g/L) PCA. The engineered plasmid-free P. putida represents a promising platform for the industrial bioproduction of fine aromatics from renewable lignin.
引用
收藏
页码:17726 / 17738
页数:13
相关论文
共 50 条
  • [1] Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid
    Li, Jin
    Ye, Bang-Ce
    Bioresource Technology, 2021, 319
  • [2] Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid
    Li, Jin
    Ye, Bang-Ce
    BIORESOURCE TECHNOLOGY, 2021, 319
  • [3] Engineering Pseudomonas putida KT2440 for the production of isobutanol
    Nitschel, Robert
    Ankenbauer, Andreas
    Welsch, Ilona
    Wirth, Nicolas T.
    Massner, Christoph
    Ahmad, Naveed
    McColm, Stephen
    Borges, Frederic
    Fotheringham, Ian
    Takors, Ralf
    Blombach, Bastian
    ENGINEERING IN LIFE SCIENCES, 2020, 20 (5-6): : 148 - 159
  • [4] Biological Valorization of Lignin-Derived Aromatics in Hydrolysate to Protocatechuic Acid by Engineered Pseudomonas putida KT2440
    Jin, Xinzhu
    Li, Xiaoxia
    Zou, Lihua
    Zheng, Zhaojuan
    Ouyang, Jia
    MOLECULES, 2024, 29 (07):
  • [5] Highly Efficient Biosynthesis of Protocatechuic Acid via Recombinant Pseudomonas putida KT2440
    Li, Jin
    Fu, Jianli
    Yue, Cheng
    Shang, Yanzhe
    Ye, Bang-Ce
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (27) : 10375 - 10382
  • [6] Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440
    Bentley, Gayle J.
    Narayanan, Niju
    Jha, Ramesh K.
    Salvachua, Davinia
    Elmore, Joshua R.
    Peabody, George L.
    Black, Brenna A.
    Ramirez, Kelsey
    De Capite, Annette
    Michener, William E.
    Werner, Allison Z.
    Klingeman, Dawn M.
    Schindel, Heidi S.
    Nelson, Robert
    Foust, Lindsey
    Guss, Adam M.
    Dale, Taraka
    Johnson, Christopher W.
    Beckham, Gregg T.
    METABOLIC ENGINEERING, 2020, 59 : 64 - 75
  • [7] Production of selenium nanoparticles in Pseudomonas putida KT2440
    Roberto Avendaño
    Nefertiti Chaves
    Paola Fuentes
    Ethel Sánchez
    Jose I. Jiménez
    Max Chavarría
    Scientific Reports, 6
  • [8] Production of selenium nanoparticles in Pseudomonas putida KT2440
    Avendano, Roberto
    Chaves, Nefertiti
    Fuentes, Paola
    Sanchez, Ethel
    Jimenez, Jose I.
    Chavarria, Max
    SCIENTIFIC REPORTS, 2016, 6
  • [9] Amino Acid Racemization in Pseudomonas putida KT2440
    Radkov, Atanas D.
    Moe, Luke A.
    JOURNAL OF BACTERIOLOGY, 2013, 195 (22) : 5016 - 5024
  • [10] Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid
    Yu, Shiqin
    Plan, Manuel R.
    Winter, Gal
    Kromer, Jens O.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2016, 4