Torrefaction integrated with steam gasification of agricultural biomass wastes for enhancing tar reduction and hydrogen-rich syngas production

被引:4
|
作者
Zhou, Quanhui [1 ]
Shen, Yafei [2 ,3 ]
Zhou, Qiaoqiao [1 ,3 ]
Zhang, Chun [1 ]
Gu, Xuehong [1 ,3 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing 210044, Jiangsu, Peoples R China
[3] Quzhou Membrane Mat Innovat Inst, Quzhou 324000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Torrefaction; Steam gasification; Tar; Hydrogen-rich syngas; HEMICELLULOSE; PRETREATMENT; TECHNOLOGY; PYROLYSIS; CELLULOSE;
D O I
10.1016/j.ijhydene.2024.11.144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Steam gasification is considered as a promising technology for conversion of various biomass wastes to valuable hydrogen (H2)-rich gas products that can be applied for the sustainable production of green hydrogen and methanol. However, some inevitable problems such as high tar content and low cold gas efficiency greatly hinder its broad application. Torrefaction has been widely employed for upgrading low-rank biomass sources that favors the follow-up gasification process, resulting in low tar yield and high syngas yield. Torrefied biomass usually shows higher energy density, improved grindability characteristics, and lower O/C and H/C ratios. This research work studies the effect of torrefaction on steam gasification of corncob (CC) and rice husk (RH). The mechanisms of biomass torrefaction integrated with steam gasification are also given. Biomass torrefied at a relatively high temperature (280 degrees C) is more efficient to extract the oxygenated volatiles, reducing the generation of tar and particulate matters during the gasification process. The increase of torrefaction temperature resulted in an increase of H2 yield and a decrease of CO yield, corresponding to an increase of H2/CO ratio. Particularly, the H2 yield in the CC-derived syngas increased from 6.38 mmol/g (raw) to 12.01 mmol/g (280 degrees C), and the H2 yield in the RH-derived syngas increased from 4.33 mmol/g (raw) to 12.97 mmol/g (280 degrees C). Steam gasification of RH torrefied at 280 degrees C achieved a maximum H2/CO ratio of 2.84. After torrefaction of CC and BB at 280 degrees C, the tar yield of steam gasification was below 1% [gasification temperature: 800 degrees C, mass ratio of steam to biomass (S/B): 1]. In general, the torrefaction pretreatment of biomass at relatively high temperatures (i.e., 280 degrees C) favors the steam gasification process under an appropriate S/B (i.e., 1) in terms of improving the syngas quality and reducing the tar production.
引用
收藏
页码:474 / 484
页数:11
相关论文
共 50 条
  • [21] Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system
    Rakesh, N.
    Dasappa, S.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 167 : 134 - 146
  • [22] Biomass steam gasification for hydrogen-rich syngas production over fly ash-based catalyst pretreated by coupling of washing and calcination
    Mo, Ziming
    He, Yao
    Liu, Jingyong
    Tu, Jianhua
    Li, Detao
    Hu, Changsong
    Zhang, Qian
    Wang, Kaige
    Wang, Tiejun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 164 - 176
  • [23] Investigation of hydrogen-rich syngas production from biomass gasification with CaO and steam based on real-time gas release behaviors
    He, Yao
    Tu, Jianhua
    Li, Detao
    Lin, Chen
    Mo, Ziming
    Huang, Shengzheng
    Hu, Changsong
    Shen, Dongsheng
    Wang, Tiejun
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 169 (169)
  • [24] Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production
    Chen, Shiyi
    Sun, Zhao
    Zhang, Qi
    Hu, Jun
    Xiang, Wenguo
    BIOMASS & BIOENERGY, 2017, 107 : 52 - 62
  • [25] Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars
    Kong, Ge
    Wang, Kejie
    Zhang, Xin
    Li, Jing
    Han, Lujia
    Zhang, Xuesong
    BIORESOURCE TECHNOLOGY, 2022, 363
  • [26] Production of hydrogen-rich syngas by steam gasification of Shengli lignite and catalytic effect of inherent minerals
    Liu, Q. (liuqs@imut.edu.cn), 1600, Materials China (64): : 2092 - 2102
  • [27] An analysis of waste/biomass gasification producing hydrogen-rich syngas: A review
    Makwana J.
    Dhass A.D.
    Ramana P.V.
    Sapariya D.
    Patel D.
    International Journal of Thermofluids, 2023, 20
  • [28] Exergy analysis of biomass staged-gasification for hydrogen-rich syngas
    Li, Qiao
    Song, Guohui
    Xiao, Jun
    Sun, Tingting
    Yang, Kai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (05) : 2569 - 2579
  • [29] Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry
    Chen, Guanyi
    Yao, Jingang
    Liu, Jing
    Yan, Beibei
    Shan, Rui
    BIORESOURCE TECHNOLOGY, 2015, 198 : 108 - 114
  • [30] Steam Gasification of Refuse-Derived Fuel with CaO Modification for Hydrogen-Rich Syngas Production
    Ren, Ranwei
    Wang, Haiming
    You, Changfu
    ENERGIES, 2022, 15 (21)