Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems

被引:2
|
作者
Fahim, Shahriar Rahman [1 ]
Atat, Rachad [2 ]
Kececi, Cihat [1 ]
Takiddin, Abdulrahman [3 ]
Ismail, Muhammad [4 ]
Davis, Katherine R. [1 ]
Serpedin, Erchin [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
[3] Florida State Univ, Dept Elect & Comp Engn, FAMU FSU Coll Engn, Tallahassee, FL 32310 USA
[4] Tennessee Technol Univ, Dept Comp Sci, Cookeville, TN 38505 USA
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2024年 / 10卷 / 04期
关键词
Transportation; Mathematical models; Power systems; Detectors; Power grids; Power system stability; Power measurement; Cybersecurity; electric vehicles (EVs); false data injection attacks (FDIAs); graph autoencoder (GAE); graph neural networks (GNNs); smart grids; DATA INJECTION ATTACKS; STATE ESTIMATION; CLASSIFICATION; NETWORKS;
D O I
10.1109/TTE.2024.3355094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%-25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems.
引用
收藏
页码:9539 / 9553
页数:15
相关论文
共 50 条
  • [1] Evasive attacks against autoencoder-based cyberattack detection systems in power systems
    Khaw, Yew Meng
    Jahromi, Amir Abiri
    Arani, Mohammadreza F. M.
    Kundur, Deepa
    ENERGY AND AI, 2024, 17
  • [2] Robust Graph Autoencoder-Based Detection of False Data Injection Attacks Against Data Poisoning in Smart Grids
    Takiddin A.
    Ismail M.
    Atat R.
    Davis K.R.
    Serpedin E.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1287 - 1301
  • [3] Detection of False Data Injection Attacks in Cyber-Physical Power Systems: An Adaptive Adversarial Dual Autoencoder With Graph Representation Learning Approach
    Feng, Hantong
    Han, Yinghua
    Si, Fangyuan
    Zhao, Qiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [4] Autoencoder-based Intrusion Detection System
    Kamalov, Firuz
    Zgheib, Rita
    Leung, Ho Hon
    Al-Gindy, Ahmed
    Moussa, Sherif
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 707 - 711
  • [5] Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays
    Arifeen, Murshedul
    Petrovski, Andrei
    Hasan, Md Junayed
    Noman, Khandaker
    Ul Navid, Wasib
    Haruna, Auwal
    MACHINES, 2024, 12 (12)
  • [6] Graph Neural Networks Based Detection of Stealth False Data Injection Attacks in Smart Grids
    Boyaci, Osman
    Umunnakwe, Amarachi
    Sahu, Abhijeet
    Narimani, Mohammad Rasoul
    Ismail, Muhammad
    Davis, Katherine R.
    Serpedin, Erchin
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 2946 - 2957
  • [7] Autoencoder-based anomaly detection for surface defect inspection
    Tsai, Du-Ming
    Jen, Po-Hao
    ADVANCED ENGINEERING INFORMATICS, 2021, 48
  • [8] A stacked autoencoder-based convolutional and recurrent deep neural network for detecting cyberattacks in interconnected power control systems
    D'Angelo, Gianni
    Palmieri, Francesco
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (12) : 7080 - 7102
  • [9] Toward Transferable Adversarial Attacks Against Autoencoder-Based Network Intrusion Detectors
    Zhang, Yihang
    Wu, Yingwen
    Huang, Xiaolin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13863 - 13872
  • [10] Machine learning autoencoder-based parameters prediction for solar power generation systems in smart grid
    Zafar, Ahsan
    Che, Yanbo
    Faheem, Muhammad
    Abubakar, Muhammad
    Ali, Shujaat
    Bhutta, Muhammad Shoaib
    IET SMART GRID, 2024, 7 (03) : 328 - 350