Overview of the TCV digital real-time plasma control system and its applications

被引:4
作者
Galperti, Cristian [1 ]
Felici, Federico [1 ,11 ]
Vu, Trang [1 ]
Sauter, Olivier [1 ]
Carpanese, F. [1 ]
Kong, M. [1 ]
Marceca, G. [1 ]
Merle, A. [1 ]
Pau, A. [1 ]
Perek, A. [1 ]
Pesamosca, F. [4 ,9 ]
Baquero-Ruiz, M. [1 ]
Coda, S. [1 ]
Decker, J. [1 ]
Duval, B. [1 ]
Gospodarczyk, M. [1 ]
Karpushov, A. [1 ]
Marchioni, S. [1 ]
Maier, A. [1 ]
Marletaz, B. [1 ]
Segovia, A. [1 ]
Vincent, B. [1 ]
Yildiz, C. [1 ]
Carnevale, D. [10 ]
Ferron, N. [6 ]
Koenders, J. [7 ,8 ]
Kool, B. [7 ,8 ]
Manduchi, G. [6 ]
Maraschek, M. [4 ]
Milne, P. [3 ,6 ]
Neto, A. C. [2 ]
Poli, E. [4 ]
Ravensbergen, T. [9 ]
Reich, M. [4 ]
Rispoli, N. [5 ]
Sartori, F. [2 ]
机构
[1] EPFL Swiss Plasma Ctr SPC, Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Fus Energy, Josep Pla 2, Barcelona 08019, Spain
[3] D TACQ Solut Ltd, Int House, Blantyre G72 0BN, Scotland
[4] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[5] CNR, Inst Plasma Sci & Technol, via Cozzi 53, I-20125 Milan, Italy
[6] Consorzio RFX, Cso Stati Uniti 4, I-35127 Padua, Italy
[7] Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[8] Eindhoven Univ Technol, NL-5612 AZ Eindhoven, Netherlands
[9] ITER Org, Route de Vinon Sur Verdon, F-13067 St Paul Les Durance, France
[10] Univ Roma Tor Vergata, Dipartimento Ing Civile & Informat, Viale Politecn 1, I-00133 Rome, Italy
[11] Google DeepMind, London, England
基金
瑞士国家科学基金会;
关键词
Tokamak control systems; Real-time systems; Controlled nuclear fusion;
D O I
10.1016/j.fusengdes.2024.114640
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Real-time plasma control systems are at the heart of operation of modern tokamaks. The control system of the TCV tokamak has recently seen a major upgrade in terms of its hardware and software components. Control algorithms are entirely programmed and tested in MATLAB/Simulink(R), executable code is automatically generated and interfaced to run-time parameters and signals through introspection using the MARTe2 software framework. The primary control system (used for coil currents, plasma current, position, shape and density control) has been upgraded by installing new analog signal inputs/output hardware, connected to two real-time computers that can operate in parallel. In addition, an EtherCAT-based real-time industrial network has been deployed to operate distributed low Input/Output count subsystems, greatly boosting the system flexibility and reach. The majority of TCV's real-time codes have been ported to this new approach, such as the realtime equilibrium reconstruction (LIUQE), real-time Magneto-Hydro-Dynamics mode analysis algorithms, and a real-time plasma supervision, actuator management and plasma event monitor, including real-time plasma analysis using neural networks, and plasma disruption avoidance control schemes.
引用
收藏
页数:15
相关论文
共 50 条
[1]   Real time magnetic control of the snowflake plasma configuration in the TCV tokamak [J].
Anand, H. ;
Coda, S. ;
Felici, F. ;
Galperti, C. ;
Moret, J-M ;
Labit, B. ;
Reimerdes, H. ;
Maurizio, R. .
NUCLEAR FUSION, 2019, 59 (12)
[2]   A novel plasma position and shape controller for advanced configuration development on the TCV tokamak [J].
Anand, H. ;
Coda, S. ;
Felici, F. ;
Galperti, C. ;
Moret, J. -M. .
NUCLEAR FUSION, 2017, 57 (12)
[3]   Distributed digital real-time control system for the TCV tokamak and its applications [J].
Anand, H. ;
Galperti, C. ;
Coda, S. ;
Duval, B. P. ;
Felici, F. ;
Blanken, T. ;
Maljaars, E. ;
Moret, J. -M. ;
Sauter, O. ;
Goodman, T. P. ;
Kim, D. .
NUCLEAR FUSION, 2017, 57 (05)
[4]  
[Anonymous], 2024, The linux fundation PREEMPT RT patches
[5]  
[Anonymous], 2021, MARTe2 documentation
[6]  
[Anonymous], 2024, DTACQ 2G system on DTACQ website
[7]  
[Anonymous], 2022, DTACQ 2106 carrier system on DTACQ website
[8]  
[Anonymous], 2021, MATLAB/Simulink products overview
[9]  
[Anonymous], 2023, SCDDS core project
[10]  
[Anonymous], 2023, SCDDS DEMO project