A Hybrid Attention-Based Transformer Model for Arabic News Classification Using Text Embedding and Deep Learning

被引:0
|
作者
Hossain, Md. Mithun [1 ]
Hossain, Md. Shakil [1 ]
Safran, Mejdl [2 ]
Alfarhood, Sultan [3 ]
Alfarhood, Meshal [3 ]
F. Mridha, M. [4 ]
机构
[1] Bangladesh Univ Business & Technol, Dept Comp Sci & Engn, Dhaka 1216, Bangladesh
[2] King Saud Univ, Coll Comp & Informat Sci, Res Chair Online Dialogue & Cultural Commun, Dept Comp Sci, Riyadh 11543, Saudi Arabia
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11543, Saudi Arabia
[4] Amer Int Univ Bangladesh, Dept Comp Sci, Dhaka 1229, Bangladesh
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep learning; Accuracy; Analytical models; Text categorization; Transformers; Sentiment analysis; Data models; Tokenization; Predictive models; Syntactics; hybrid transformer; Arabic text classifications; Arabic news classifications; SENTIMENT ANALYSIS;
D O I
10.1109/ACCESS.2024.3522061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Efficient classification of Arabic news items has become more crucial for efficient information management and analysis due to the fast growth of online news material. This paper proposes a hybrid Attention-Based Transformer Model (ABTM) for Arabic news categorization that uses deep learning and classical text representations to improve classification accuracy and interpretability. Given the increasing amount of Arabic news materials, robust categorization systems are crucial for properly managing and analyzing this information. To deal with the complexities of the Arabic language and enrich the dataset, we used a thorough preparation pipeline that includes text cleaning, tokenization, lemmatization, and data augmentation approaches. We combined a bespoke attention embedder with classic TF-IDF and Bag-of-Words features to provide a comprehensive feature set that includes both the text's contextual and statistical aspects. We benchmarked our technique using cutting-edge Arabic language models, such as AraBERTv1-base and asafaya/bert-base-arabic. We use (local interpretable model agnostic explanation) text explainer to offer insights into model predictions, improving our findings' interpretability. Our results show that the ABTM strategy considerably enhances classification performance, with high accuracy and reasonable explanations for model decisions. This classification includes a wide range of news categories, including politics, sports, culture, the economy, and a variety of themes, representing the diversity of Arabic news. This study contributes to the field of Arabic natural language processing by offering a novel method that combines deep learning with traditional techniques, thereby advancing the state of Arabic news classification. Enhanced classification accuracy and interpretability facilitate better management and understanding of the rich and growing Arabic news content, supporting informed decision-making and knowledge discovery.
引用
收藏
页码:198046 / 198066
页数:21
相关论文
共 50 条
  • [21] A BERT-Based Hybrid Short Text Classification Model Incorporating CNN and Attention-Based BiGRU
    Bao, Tong
    Ren, Ni
    Luo, Rui
    Wang, Baojia
    Shen, Gengyu
    Guo, Ting
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2021, 33 (06)
  • [22] A Proposed Deep Learning based Framework for Arabic Text Classification
    Sayed, Mostafa
    Abdelkader, Hatem
    Khedr, Ayman E.
    Salem, Rashed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 305 - 313
  • [23] Arabic News Classification Based on the Country of Origin Using Machine Learning and Deep Learning Techniques
    Zamzami, Nuha
    Himdi, Hanen
    Sabbeh, Sahar F.
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [24] An attention-based deep learning for acute lymphoblastic leukemia classification
    Jawahar, Malathy
    Anbarasi, L. Jani
    Narayanan, Sathiya
    Gandomi, Amir H.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Federated deep active learning for attention-based transaction classification
    Usman Ahmed
    Jerry Chun-Wei Lin
    Philippe Fournier-Viger
    Applied Intelligence, 2023, 53 : 8631 - 8643
  • [26] Multimodal attention-based deep learning for automatic modulation classification
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [27] Federated deep active learning for attention-based transaction classification
    Ahmed, Usman
    Lin, Jerry Chun-Wei
    Fournier-Viger, Philippe
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8631 - 8643
  • [28] Word embedding and text classification based on deep learning methods
    Li, Saihan
    Gong, Bing
    2020 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE COMMUNICATION AND NETWORK SECURITY (CSCNS2020), 2021, 336
  • [29] Mobile traffic prediction with attention-based hybrid deep learning
    Wang, Li
    Che, Linxiao
    Lam, Kwok-Yan
    Liu, Wenqiang
    Li, Feng
    PHYSICAL COMMUNICATION, 2024, 66
  • [30] A Deep Learning Approach for Arabic Text Classification
    Sundus, Katrina
    Al-Haj, Fatima
    Hammo, Bassam
    2019 2ND INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2019, : 258 - 264